論文の概要: Trajectory Forecasting on Temporal Graphs
- arxiv url: http://arxiv.org/abs/2207.00255v1
- Date: Fri, 1 Jul 2022 08:11:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 00:45:28.821739
- Title: Trajectory Forecasting on Temporal Graphs
- Title(参考訳): 時間グラフ上の軌道予測
- Authors: G\"orkay Aydemir, Adil Kaan Akan, Fatma G\"uney
- Abstract要約: 現場におけるエージェントの将来の位置を予測することは、自動運転車にとって重要な問題である。
本稿では,交通シーンのダイナミックスをよりよく捉えるための時間グラフ表現を提案する。
我々はArgoverseベンチマークで最先端のパフォーマンスに到達できるより良い結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting future locations of agents in the scene is an important problem in
self-driving. In recent years, there has been a significant progress in
representing the scene and the agents in it. The interactions of agents with
the scene and with each other are typically modeled with a Graph Neural
Network. However, the graph structure is mostly static and fails to represent
the temporal changes in highly dynamic scenes. In this work, we propose a
temporal graph representation to better capture the dynamics in traffic scenes.
We complement our representation with two types of memory modules; one focusing
on the agent of interest and the other on the entire scene. This allows us to
learn temporally-aware representations that can achieve good results even with
simple regression of multiple futures. When combined with goal-conditioned
prediction, we show better results that can reach the state-of-the-art
performance on the Argoverse benchmark.
- Abstract(参考訳): 現場におけるエージェントの将来の位置を予測することは、自動運転において重要な問題である。
近年では、シーンとその中のエージェントの表現が著しく進歩している。
エージェントとシーンの相互作用は、通常、グラフニューラルネットワークでモデル化される。
しかし、グラフ構造はほとんど静的であり、非常にダイナミックなシーンにおける時間的変化を表現できない。
本研究では,トラヒックシーンのダイナミクスをよりよく捉えるための時間グラフ表現を提案する。
我々は2種類のメモリモジュールで表現を補完する。1つは関心のエージェントに焦点を当て、もう1つはシーン全体に焦点を当てる。
これにより、複数の未来を単純に回帰しても良い結果が得られる時間認識表現を学習できます。
目標条件付き予測と組み合わせると、Argoverseベンチマークの最先端性能に到達できるより良い結果を示す。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Cross-Modality Time-Variant Relation Learning for Generating Dynamic
Scene Graphs [16.760066844287046]
動的シーングラフにおける関係の時間的変化をモデル化するために,時間変動型関係対応TRansformer (TR$2$)を提案する。
TR$2$は2つの異なる設定下で従来の最先端メソッドよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-15T10:30:38Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - LaneRCNN: Distributed Representations for Graph-Centric Motion
Forecasting [104.8466438967385]
LaneRCNNはグラフ中心のモーション予測モデルです。
アクターごとのローカルレーングラフ表現を学び、過去の動きとローカルマップのトポロジをエンコードします。
我々はレーングラフに基づいて出力軌跡をパラメータ化し,よりアメニブルな予測パラメータ化を行う。
論文 参考訳(メタデータ) (2021-01-17T11:54:49Z) - Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [4.574413934477815]
本稿では,トラフィックアクタと静的および動的トラフィック要素の両方をノードが表現するハイブリッドグラフを提案する。
アクターとトラフィック要素間の時間的相互作用(例えば、停止と移動)の異なるモードは、グラフエッジによって明示的にモデル化される。
提案するモデルであるTrafficGraphNetは,高いレベルの解釈性を維持しつつ,最先端の軌道予測精度を実現する。
論文 参考訳(メタデータ) (2020-09-27T18:20:03Z) - Understanding Dynamic Scenes using Graph Convolution Networks [22.022759283770377]
本稿では,移動カメラが捉えた時間順のフレーム列から道路車両の挙動をモデル化する新しい枠組みを提案する。
微調整に頼らずに複数のデータセットへの学習のシームレスな移行を示す。
このような振る舞い予測手法は,様々なナビゲーションタスクにおいて即時関連性を見出す。
論文 参考訳(メタデータ) (2020-05-09T13:05:06Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z) - 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places,
Objects, and Humans [27.747241700017728]
動作可能な空間知覚のための統一表現として,3次元ダイナミックシーングラフを提案する。
3D Dynamic Scene Graphsは、計画と意思決定、人間とロボットのインタラクション、長期的な自律性、シーン予測に大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2020-02-15T00:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。