SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors
- URL: http://arxiv.org/abs/2207.00458v1
- Date: Fri, 1 Jul 2022 14:30:59 GMT
- Title: SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors
- Authors: Botond Fazekas, Guilherme Aresta, Dmitrii Lachinov, Sophie Riedl,
Julia Mai, Ursula Schmidt-Erfurth, Hrvoje Bogunovic
- Abstract summary: We introduce a semi-supervised paradigm into the retinal layer segmentation task.
In particular, a novel fully differentiable approach is used for converting surface position regression into a pixel-wise structured segmentation.
In parallel, we propose a set of anatomical priors to improve network training when a limited amount of labeled data is available.
- Score: 4.2663199451998475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical coherence tomography (OCT) is a non-invasive 3D modality widely used
in ophthalmology for imaging the retina. Achieving automated, anatomically
coherent retinal layer segmentation on OCT is important for the detection and
monitoring of different retinal diseases, like Age-related Macular Disease
(AMD) or Diabetic Retinopathy. However, the majority of state-of-the-art layer
segmentation methods are based on purely supervised deep-learning, requiring a
large amount of pixel-level annotated data that is expensive and hard to
obtain. With this in mind, we introduce a semi-supervised paradigm into the
retinal layer segmentation task that makes use of the information present in
large-scale unlabeled datasets as well as anatomical priors. In particular, a
novel fully differentiable approach is used for converting surface position
regression into a pixel-wise structured segmentation, allowing to use both 1D
surface and 2D layer representations in a coupled fashion to train the model.
In particular, these 2D segmentations are used as anatomical factors that,
together with learned style factors, compose disentangled representations used
for reconstructing the input image. In parallel, we propose a set of anatomical
priors to improve network training when a limited amount of labeled data is
available. We demonstrate on the real-world dataset of scans with intermediate
and wet-AMD that our method outperforms state-of-the-art when using our full
training set, but more importantly largely exceeds state-of-the-art when it is
trained with a fraction of the labeled data.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Segmentation-guided Domain Adaptation and Data Harmonization of
Multi-device Retinal Optical Coherence Tomography using Cycle-Consistent
Generative Adversarial Networks [2.968191199408213]
This paper proposes a segmentation-guided domain-adaptation method to adapt images from multiple devices into single image domain.
It avoids the time consumption of manual labelling for the upcoming new dataset and the re-training of the existing network.
arXiv Detail & Related papers (2022-08-31T05:06:00Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.