Learning Job Titles Similarity from Noisy Skill Labels
- URL: http://arxiv.org/abs/2207.00494v3
- Date: Mon, 3 Apr 2023 11:09:07 GMT
- Title: Learning Job Titles Similarity from Noisy Skill Labels
- Authors: Rabih Zbib, Lucas Alvarez Lacasa, Federico Retyk, Rus Poves, Juan
Aizpuru, Hermenegildo Fabregat, Vaidotas Simkus, and Emilia
Garc\'ia-Casademont
- Abstract summary: Measuring semantic similarity between job titles is an essential functionality for automatic job recommendations.
In this paper, we propose an unsupervised representation learning method for training a job title similarity model using noisy skill labels.
- Score: 0.11498015270151059
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Measuring semantic similarity between job titles is an essential
functionality for automatic job recommendations. This task is usually
approached using supervised learning techniques, which requires training data
in the form of equivalent job title pairs. In this paper, we instead propose an
unsupervised representation learning method for training a job title similarity
model using noisy skill labels. We show that it is highly effective for tasks
such as text ranking and job normalization.
Related papers
- Learning Job Title Representation from Job Description Aggregation Network [5.6383925539466855]
Existing methods primarily rely on learning the title representation through skills extracted from the job description.
We propose an alternative framework for learning job titles through their respective job description (JD)
arXiv Detail & Related papers (2024-06-12T10:12:52Z) - VacancySBERT: the approach for representation of titles and skills for
semantic similarity search in the recruitment domain [0.0]
The paper focuses on deep learning semantic search algorithms applied in the HR domain.
The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title.
arXiv Detail & Related papers (2023-07-31T13:21:15Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
We propose a Siamese LSTM Network approach to extract -- via supervised learning -- an embedding of company name strings.
We analyse how an Active Learning approach to prioritise the samples to be labelled leads to a more efficient overall learning pipeline.
arXiv Detail & Related papers (2023-03-07T15:07:57Z) - SkillRec: A Data-Driven Approach to Job Skill Recommendation for Career
Insights [0.3121997724420106]
SkillRec collects and identifies the skill set required for a job based on the job descriptions published by companies hiring for these roles.
Based on our preliminary experiments on a dataset of 6,000 job titles and descriptions, SkillRec shows a promising performance in terms of accuracy and F1-score.
arXiv Detail & Related papers (2023-02-20T12:07:57Z) - Improving Multi-task Generalization Ability for Neural Text Matching via
Prompt Learning [54.66399120084227]
Recent state-of-the-art neural text matching models (PLMs) are hard to generalize to different tasks.
We adopt a specialization-generalization training strategy and refer to it as Match-Prompt.
In specialization stage, descriptions of different matching tasks are mapped to only a few prompt tokens.
In generalization stage, text matching model explores the essential matching signals by being trained on diverse multiple matching tasks.
arXiv Detail & Related papers (2022-04-06T11:01:08Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Predicting Job Titles from Job Descriptions with Multi-label Text
Classification [0.0]
We propose the multi-label classification approach for predicting relevant job titles from job description texts.
We implement the Bi-GRU-LSTM-CNN with different pre-trained language models to apply for the job titles prediction problem.
arXiv Detail & Related papers (2021-12-21T09:31:03Z) - JobBERT: Understanding Job Titles through Skills [12.569546741576515]
Job titles form a cornerstone of today's human resources (HR) processes.
Job titles are a compact, convenient, and readily available data source.
We propose a neural representation model for job titles, by augmenting a pre-trained language model with co-occurrence information from skill labels extracted from vacancies.
arXiv Detail & Related papers (2021-09-20T15:00:10Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks.
In this work we overcome this issue by inferring a conditioning function, mapping the tasks' side information into a representation tailored to the task at hand.
We propose a meta-algorithm capable of leveraging this advantage in practice.
arXiv Detail & Related papers (2021-03-30T12:02:14Z) - Adaptive Self-training for Few-shot Neural Sequence Labeling [55.43109437200101]
We develop techniques to address the label scarcity challenge for neural sequence labeling models.
Self-training serves as an effective mechanism to learn from large amounts of unlabeled data.
meta-learning helps in adaptive sample re-weighting to mitigate error propagation from noisy pseudo-labels.
arXiv Detail & Related papers (2020-10-07T22:29:05Z) - Job2Vec: Job Title Benchmarking with Collective Multi-View
Representation Learning [51.34011135329063]
Job Title Benchmarking (JTB) aims at matching job titles with similar expertise levels across various companies.
Traditional JTB approaches mainly rely on manual market surveys, which is expensive and labor-intensive.
We reformulate the JTB as the task of link prediction over the Job-Graph that matched job titles should have links.
arXiv Detail & Related papers (2020-09-16T02:33:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.