Learning Job Title Representation from Job Description Aggregation Network
- URL: http://arxiv.org/abs/2406.08055v1
- Date: Wed, 12 Jun 2024 10:12:52 GMT
- Title: Learning Job Title Representation from Job Description Aggregation Network
- Authors: Napat Laosaengpha, Thanit Tativannarat, Chawan Piansaddhayanon, Attapol Rutherford, Ekapol Chuangsuwanich,
- Abstract summary: Existing methods primarily rely on learning the title representation through skills extracted from the job description.
We propose an alternative framework for learning job titles through their respective job description (JD)
- Score: 5.6383925539466855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning job title representation is a vital process for developing automatic human resource tools. To do so, existing methods primarily rely on learning the title representation through skills extracted from the job description, neglecting the rich and diverse content within. Thus, we propose an alternative framework for learning job titles through their respective job description (JD) and utilize a Job Description Aggregator component to handle the lengthy description and bidirectional contrastive loss to account for the bidirectional relationship between the job title and its description. We evaluated the performance of our method on both in-domain and out-of-domain settings, achieving a superior performance over the skill-based approach.
Related papers
- Combining Embeddings and Domain Knowledge for Job Posting Duplicate Detection [42.49221181099313]
Job descriptions are posted on many online channels, including company websites, job boards or social media platforms.
It is helpful to aggregate job postings across platforms and thus detect duplicate descriptions that refer to the same job.
We show that combining overlap-based character similarity with text embedding and keyword matching methods lead to convincing results.
arXiv Detail & Related papers (2024-06-10T13:38:15Z) - TAROT: A Hierarchical Framework with Multitask Co-Pretraining on
Semi-Structured Data towards Effective Person-Job Fit [60.31175803899285]
We propose TAROT, a hierarchical multitask co-pretraining framework, to better utilize structural and semantic information for informative text embeddings.
TAROT targets semi-structured text in profiles and jobs, and it is co-pretained with multi-grained pretraining tasks to constrain the acquired semantic information at each level.
arXiv Detail & Related papers (2024-01-15T07:57:58Z) - VacancySBERT: the approach for representation of titles and skills for
semantic similarity search in the recruitment domain [0.0]
The paper focuses on deep learning semantic search algorithms applied in the HR domain.
The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title.
arXiv Detail & Related papers (2023-07-31T13:21:15Z) - Automated Few-shot Classification with Instruction-Finetuned Language
Models [76.69064714392165]
We show that AuT-Few outperforms state-of-the-art few-shot learning methods.
We also show that AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark.
arXiv Detail & Related papers (2023-05-21T21:50:27Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
We propose a Siamese LSTM Network approach to extract -- via supervised learning -- an embedding of company name strings.
We analyse how an Active Learning approach to prioritise the samples to be labelled leads to a more efficient overall learning pipeline.
arXiv Detail & Related papers (2023-03-07T15:07:57Z) - Learning Job Titles Similarity from Noisy Skill Labels [0.11498015270151059]
Measuring semantic similarity between job titles is an essential functionality for automatic job recommendations.
In this paper, we propose an unsupervised representation learning method for training a job title similarity model using noisy skill labels.
arXiv Detail & Related papers (2022-07-01T15:30:10Z) - Predicting Job Titles from Job Descriptions with Multi-label Text
Classification [0.0]
We propose the multi-label classification approach for predicting relevant job titles from job description texts.
We implement the Bi-GRU-LSTM-CNN with different pre-trained language models to apply for the job titles prediction problem.
arXiv Detail & Related papers (2021-12-21T09:31:03Z) - Transformer-Based Approach for Joint Handwriting and Named Entity
Recognition in Historical documents [1.7491858164568674]
This work presents the first approach that adopts the transformer networks for named entity recognition in handwritten documents.
We achieve the new state-of-the-art performance in the ICDAR 2017 Information Extraction competition using the Esposalles database.
arXiv Detail & Related papers (2021-12-08T09:26:21Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - Learning to Match Jobs with Resumes from Sparse Interaction Data using
Multi-View Co-Teaching Network [83.64416937454801]
Job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms.
We propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching.
Our model is able to outperform state-of-the-art methods for job-resume matching.
arXiv Detail & Related papers (2020-09-25T03:09:54Z) - Job2Vec: Job Title Benchmarking with Collective Multi-View
Representation Learning [51.34011135329063]
Job Title Benchmarking (JTB) aims at matching job titles with similar expertise levels across various companies.
Traditional JTB approaches mainly rely on manual market surveys, which is expensive and labor-intensive.
We reformulate the JTB as the task of link prediction over the Job-Graph that matched job titles should have links.
arXiv Detail & Related papers (2020-09-16T02:33:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.