Ultra-low latency recurrent neural network inference on FPGAs for
physics applications with hls4ml
- URL: http://arxiv.org/abs/2207.00559v1
- Date: Fri, 1 Jul 2022 17:19:24 GMT
- Title: Ultra-low latency recurrent neural network inference on FPGAs for
physics applications with hls4ml
- Authors: Elham E Khoda, Dylan Rankin, Rafael Teixeira de Lima, Philip Harris,
Scott Hauck, Shih-Chieh Hsu, Michael Kagan, Vladimir Loncar, Chaitanya
Paikara, Richa Rao, Sioni Summers, Caterina Vernieri, Aaron Wang
- Abstract summary: We present an implementation of two types of recurrent neural network layers -- long short-term memory and gated recurrent unit -- within the hls4ml framework.
We show the performance and synthesized designs for multiple neural networks, many of which are trained specifically for jet identification tasks at the CERN Large Hadron Collider.
- Score: 8.085746138965975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recurrent neural networks have been shown to be effective architectures for
many tasks in high energy physics, and thus have been widely adopted. Their use
in low-latency environments has, however, been limited as a result of the
difficulties of implementing recurrent architectures on field-programmable gate
arrays (FPGAs). In this paper we present an implementation of two types of
recurrent neural network layers -- long short-term memory and gated recurrent
unit -- within the hls4ml framework. We demonstrate that our implementation is
capable of producing effective designs for both small and large models, and can
be customized to meet specific design requirements for inference latencies and
FPGA resources. We show the performance and synthesized designs for multiple
neural networks, many of which are trained specifically for jet identification
tasks at the CERN Large Hadron Collider.
Related papers
- Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - High-Performance FPGA-based Accelerator for Bayesian Recurrent Neural
Networks [2.0631735969348064]
We propose an FPGA-based hardware design to accelerate Bayesian LSTM-based RNNs.
Compared with GPU implementation, our FPGA-based design can achieve up to 10 times speedup with nearly 106 times higher energy efficiency.
arXiv Detail & Related papers (2021-06-04T14:30:39Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Real-time Multi-Task Diffractive Deep Neural Networks via
Hardware-Software Co-design [1.6066483376871004]
This work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$2$NNs.
Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$2$NN architecture.
arXiv Detail & Related papers (2020-12-16T12:29:54Z) - Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle
Reconstruction in High Energy Physics [11.125632758828266]
We discuss how to design distance-weighted graph networks that can be executed with a latency of less than 1$mumathrms$ on an FPGA.
We consider a representative task associated to particle reconstruction and identification in a next-generation calorimeter operating at a particle collider.
We convert the compressed models into firmware to be implemented on an FPGA.
arXiv Detail & Related papers (2020-08-08T21:26:31Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - LogicNets: Co-Designed Neural Networks and Circuits for
Extreme-Throughput Applications [6.9276012494882835]
We present a novel method for designing neural network topologies that directly map to a highly efficient FPGA implementation.
We show that the combination of sparsity and low-bit activation quantization results in high-speed circuits with small logic depth and low LUT cost.
arXiv Detail & Related papers (2020-04-06T22:15:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.