Disorder-Assisted Assembly of Strongly Correlated Fluids of Light
- URL: http://arxiv.org/abs/2207.00577v1
- Date: Fri, 1 Jul 2022 17:56:15 GMT
- Title: Disorder-Assisted Assembly of Strongly Correlated Fluids of Light
- Authors: Brendan Saxberg, Andrei Vrajitoarea, Gabrielle Roberts, Margaret G.
Panetta, Jonathan Simon, David I. Schuster
- Abstract summary: We construct low-entropy quantum fluids of light in a Bose Hubbard circuit.
We first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states.
This work opens new possibilities for preparation of topological and otherwise exotic phases of synthetic matter.
- Score: 0.08388591755871733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Guiding many-body systems to desired states is a central challenge of modern
quantum science, with applications from quantum computation to many-body
physics and quantum-enhanced metrology. Approaches to solving this problem
include step-by-step assembly, reservoir engineering to irreversibly pump
towards a target state, and adiabatic evolution from a known initial state.
Here we construct low-entropy quantum fluids of light in a Bose Hubbard circuit
by combining particle-by-particle assembly and adiabatic preparation. We inject
individual photons into a disordered lattice where the eigenstates are known &
localized, then adiabatically remove this disorder, allowing quantum
fluctuations to melt the photons into a fluid. Using our plat-form, we first
benchmark this lattice melting technique by building and characterizing
arbitrary single-particle-in-a-box states, then assemble multi-particle
strongly correlated fluids. Inter-site entanglement measurements performed
through single-site tomography indicate that the particles in the fluid
delocalize, while two-body density correlation measurements demonstrate that
they also avoid one another, revealing Friedel oscillations characteristic of a
Tonks-Girardeau gas. This work opens new possibilities for preparation of
topological and otherwise exotic phases of synthetic matter.
Related papers
- Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Superdiffusion of vortices in two-component quantum fluids of light [0.0]
Kerr nonlinearity promotes interactions between the photons, displaying features that are analogue of a Bose-Einstein condensates.
We numerically solve the problem by simulating a vortex-like impurity in the presence of noise.
We support our results with a theory that has been previously developed for the brownian motion of point-like particles.
arXiv Detail & Related papers (2023-12-11T12:04:40Z) - Manybody Interferometry of Quantum Fluids [0.19528996680336308]
'Manybody Ramsey interferometry' combines adiabatic state preparation and Ramsey spectroscopy.
This work opens new avenues for characterizing manybody states, paving the way for quantum computers to efficiently probe quantum matter.
arXiv Detail & Related papers (2023-09-11T18:01:17Z) - Non-Markovian Dynamics of Open Quantum Systems via Auxiliary Particles
with Exact Operator Constraint [0.0]
We introduce an auxiliary-particle field theory to treat the non-Markovian dynamics of driven-dissipative quantum systems.
We apply the method to a driven-dissipative photon Bose-Einstein condensate (BEC) coupled to a reservoir of dye molecules with electronic and vibronic excitations.
arXiv Detail & Related papers (2023-08-02T06:56:38Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.