Feature-selected Graph Spatial Attention Network for Addictive
Brain-Networks Identification
- URL: http://arxiv.org/abs/2207.00583v2
- Date: Tue, 5 Jul 2022 08:12:47 GMT
- Title: Feature-selected Graph Spatial Attention Network for Addictive
Brain-Networks Identification
- Authors: Changwei Gong, Changhong Jing, Junren Pan, Shuqiang Wang
- Abstract summary: fMRI's high dimensionality and poor signal-to-noise ratio make it challenging to encode efficient and robust brain regional embeddings for both graph-level identification.
In this work, we represent the fMRI rat brain as a graph with biological attributes and propose a novel feature-selected graph spatial attention network.
- Score: 4.224312918460521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional alterations in the relevant neural circuits occur from drug
addiction over a certain period. And these significant alterations are also
revealed by analyzing fMRI. However, because of fMRI's high dimensionality and
poor signal-to-noise ratio, it is challenging to encode efficient and robust
brain regional embeddings for both graph-level identification and region-level
biomarkers detection tasks between nicotine addiction (NA) and healthy control
(HC) groups. In this work, we represent the fMRI of the rat brain as a graph
with biological attributes and propose a novel feature-selected graph spatial
attention network(FGSAN) to extract the biomarkers of addiction and identify
from these brain networks. Specially, a graph spatial attention encoder is
employed to capture the features of spatiotemporal brain networks with spatial
information. The method simultaneously adopts a Bayesian feature selection
strategy to optimize the model and improve classification task by constraining
features. Experiments on an addiction-related neural imaging dataset show that
the proposed model can obtain superior performance and detect interpretable
biomarkers associated with addiction-relevant neural circuits.
Related papers
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
We propose the 3D cerebrovascular attention UNet method, named CV-AttentionUNet, for precise extraction of brain vessel images.
To combine the low and high semantics, we applied the attention mechanism.
We believe that the novelty of this algorithm lies in its ability to perform well on both labeled and unlabeled data.
arXiv Detail & Related papers (2023-11-16T22:31:05Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis [29.489129970039873]
A promising approach to identify the salient regions is using Graph Neural Networks (GNNs)
We propose an interpretable GNN framework with a novel salient region selection mechanism to determine neurological brain biomarkers associated with disorders.
We apply the PR-GNN framework on a Biopoint Autism Spectral Disorder (ASD) fMRI dataset.
arXiv Detail & Related papers (2020-07-29T04:19:36Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.