論文の概要: Multivariate Time Series Anomaly Detection with Few Positive Samples
- arxiv url: http://arxiv.org/abs/2207.00705v1
- Date: Sat, 2 Jul 2022 00:58:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 12:05:16.814166
- Title: Multivariate Time Series Anomaly Detection with Few Positive Samples
- Title(参考訳): 正のサンプルが少ない多変量時系列異常検出
- Authors: Feng Xue, Weizhong Yan
- Abstract要約: この実践的状況のニーズに対処する2つの方法を紹介する。
提案手法は, 自己回帰(AR)モデルを用いた正規動作の代表的な学習に有効である。
文献からのアプローチと比較して,効果的な性能を示す。
- 参考スコア(独自算出の注目度): 12.256288627540536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the scarcity of anomalies in real-world applications, the majority of
literature has been focusing on modeling normality. The learned representations
enable anomaly detection as the normality model is trained to capture certain
key underlying data regularities under normal circumstances. In practical
settings, particularly industrial time series anomaly detection, we often
encounter situations where a large amount of normal operation data is available
along with a small number of anomaly events collected over time. This practical
situation calls for methodologies to leverage these small number of anomaly
events to create a better anomaly detector. In this paper, we introduce two
methodologies to address the needs of this practical situation and compared
them with recently developed state of the art techniques. Our proposed methods
anchor on representative learning of normal operation with autoregressive (AR)
model along with loss components to encourage representations that separate
normal versus few positive examples. We applied the proposed methods to two
industrial anomaly detection datasets and demonstrated effective performance in
comparison with approaches from literature. Our study also points out
additional challenges with adopting such methods in practical applications.
- Abstract(参考訳): 現実の応用における異常の不足を考えると、文献の大半は正規性をモデル化することに集中している。
学習された表現は、正規性モデルが訓練されたときの異常検出を可能にし、通常の状況下で重要なデータ正規性をキャプチャする。
実用的な設定、特に産業時系列異常検出では、時間とともに収集される少数の異常事象とともに、大量の正常な操作データが利用できる状況に遭遇することが多い。
この実践的な状況は、これらの少数の異常事象を利用してより良い異常検出を行う方法を要求する。
本稿では,この実践的状況のニーズに対処する2つの手法を紹介し,最近開発された技術技術と比較する。
提案手法は, 自己回帰(AR)モデルと損失成分を併用し, 正規と少数の正の例を分離した表現を促進する。
提案手法を2つの産業用異常検出データセットに適用し,文献からのアプローチと比較して有効性能を示した。
また,このような手法を実用に応用する上での課題についても指摘する。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection [37.992737349167676]
時系列異常検出のための周波数領域における多重正規パターン対応異常検出手法を提案する。
i) 統一モデルで多様な正規パターンを扱うのに優れたパターン抽出機構、(ii) 時間領域における短期異常を増幅し周波数領域における異常の再構築を妨げる双対的畳み込み機構、(iii) 周波数領域のスパーシリティと並列性を活用してモデル効率を向上させる。
論文 参考訳(メタデータ) (2023-11-26T03:31:43Z) - Few-shot Anomaly Detection in Text with Deviation Learning [13.957106119614213]
偏差学習を用いたエンドツーエンド手法で異常スコアを明示的に学習するフレームワークであるFATEを紹介する。
本モデルは,マルチヘッド・セルフアテンション・レイヤと複数インスタンス・ラーニング・アプローチを用いて,異常の異なる振る舞いを学習するために最適化されている。
論文 参考訳(メタデータ) (2023-08-22T20:40:21Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
そこで本稿では,SaliencyCutという新たなデータ拡張手法を提案する。
次に、各サンプルから微細な異常特徴を抽出し評価するために、異常学習ヘッドにパッチワイド残余モジュールを新規に設計する。
論文 参考訳(メタデータ) (2023-06-14T08:55:36Z) - Real-Time Outlier Detection with Dynamic Process Limits [0.609170287691728]
本稿では,既存のリアルタイムインフラストラクチャを対象としたオンライン異常検出アルゴリズムを提案する。
オンライン逆累積分布に基づく手法を導入し、オフライン異常検出器の一般的な問題を排除した。
提案手法の利点は, 実マイクログリッド演算データの2例に示すように, 使いやすさ, 高速計算, 展開性である。
論文 参考訳(メタデータ) (2023-01-31T10:23:02Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。