Boundary-Guided Camouflaged Object Detection
- URL: http://arxiv.org/abs/2207.00794v1
- Date: Sat, 2 Jul 2022 10:48:35 GMT
- Title: Boundary-Guided Camouflaged Object Detection
- Authors: Yujia Sun, Shuo Wang, Chenglizhao Chen, Tian-Zhu Xiang
- Abstract summary: We propose a novel boundary-guided network (BGNet) for camouflaged object detection.
Our method explores valuable and extra object-related edge semantics to guide representation learning of COD.
Our method promotes camouflaged object detection of accurate boundary localization.
- Score: 20.937071658007255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged object detection (COD), segmenting objects that are elegantly
blended into their surroundings, is a valuable yet challenging task. Existing
deep-learning methods often fall into the difficulty of accurately identifying
the camouflaged object with complete and fine object structure. To this end, in
this paper, we propose a novel boundary-guided network (BGNet) for camouflaged
object detection. Our method explores valuable and extra object-related edge
semantics to guide representation learning of COD, which forces the model to
generate features that highlight object structure, thereby promoting
camouflaged object detection of accurate boundary localization. Extensive
experiments on three challenging benchmark datasets demonstrate that our BGNet
significantly outperforms the existing 18 state-of-the-art methods under four
widely-used evaluation metrics. Our code is publicly available at:
https://github.com/thograce/BGNet.
Related papers
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - Adaptive Guidance Learning for Camouflaged Object Detection [23.777432551429396]
This paper proposes an adaptive guidance learning network, dubbed textitAGLNet, to guide accurate camouflaged feature learning.
Experiments on three widely used COD benchmark datasets demonstrate that the proposed method achieves significant performance improvements.
arXiv Detail & Related papers (2024-05-05T06:21:58Z) - Camouflaged Image Synthesis Is All You Need to Boost Camouflaged
Detection [65.8867003376637]
We propose a framework for synthesizing camouflage data to enhance the detection of camouflaged objects in natural scenes.
Our approach employs a generative model to produce realistic camouflage images, which can be used to train existing object detection models.
Our framework outperforms the current state-of-the-art method on three datasets.
arXiv Detail & Related papers (2023-08-13T06:55:05Z) - Referring Camouflaged Object Detection [97.90911862979355]
Ref-COD aims to segment specified camouflaged objects based on a small set of referring images with salient target objects.
We first assemble a large-scale dataset, called R2C7K, which consists of 7K images covering 64 object categories in real-world scenarios.
arXiv Detail & Related papers (2023-06-13T04:15:37Z) - Towards Deeper Understanding of Camouflaged Object Detection [64.81987999832032]
We argue that the binary segmentation setting fails to fully understand the concept of camouflage.
We present the first triple-task learning framework to simultaneously localize, segment and rank camouflaged objects.
arXiv Detail & Related papers (2022-05-23T14:26:18Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - Scribble-based Boundary-aware Network for Weakly Supervised Salient
Object Detection in Remote Sensing Images [10.628932392896374]
We propose a novel weakly-supervised salient object detection framework to predict the saliency of remote sensing images from sparse scribble annotations.
Specifically, we design a boundary-aware module (BAM) to explore the object boundary semantics, which is explicitly supervised by the high-confidence object boundary (pseudo) labels.
Then, the boundary semantics are integrated with high-level features to guide the salient object detection under the supervision of scribble labels.
arXiv Detail & Related papers (2022-02-07T20:32:21Z) - Fast Camouflaged Object Detection via Edge-based Reversible
Re-calibration Network [17.538512222905087]
This paper proposes a novel edge-based reversible re-calibration network called ERRNet.
Our model is characterized by two innovative designs, namely Selective Edge Aggregation (SEA) and Reversible Re-calibration Unit (RRU)
Experimental results show that ERRNet outperforms existing cutting-edge baselines on three COD datasets and five medical image segmentation datasets.
arXiv Detail & Related papers (2021-11-05T02:03:54Z) - MLCVNet: Multi-Level Context VoteNet for 3D Object Detection [51.45832752942529]
We propose Multi-Level Context VoteNet (MLCVNet) to recognize 3D objects correlatively, building on the state-of-the-art VoteNet.
We introduce three context modules into the voting and classifying stages of VoteNet to encode contextual information at different levels.
Our method is an effective way to promote detection accuracy, achieving new state-of-the-art detection performance on challenging 3D object detection datasets.
arXiv Detail & Related papers (2020-04-12T19:10:24Z) - Object as Hotspots: An Anchor-Free 3D Object Detection Approach via
Firing of Hotspots [37.16690737208046]
We argue for an approach opposite to existing methods using object-level anchors.
Inspired by compositional models, we propose an object as composition of its interior non-empty voxels, termed hotspots.
Based on OHS, we propose an anchor-free detection head with a novel ground truth assignment strategy.
arXiv Detail & Related papers (2019-12-30T03:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.