Geometric Learning of Hidden Markov Models via a Method of Moments
Algorithm
- URL: http://arxiv.org/abs/2207.00818v1
- Date: Sat, 2 Jul 2022 12:24:38 GMT
- Title: Geometric Learning of Hidden Markov Models via a Method of Moments
Algorithm
- Authors: Berlin Chen, Cyrus Mostajeran, Salem Said
- Abstract summary: We present a novel algorithm for learning the parameters of hidden Markov models (HMMs) in a geometric setting.
We demonstrate through examples that the learner can result in significantly improved speed and numerical accuracy compared to existing learners.
- Score: 11.338112397748619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel algorithm for learning the parameters of hidden Markov
models (HMMs) in a geometric setting where the observations take values in
Riemannian manifolds. In particular, we elevate a recent second-order method of
moments algorithm that incorporates non-consecutive correlations to a more
general setting where observations take place in a Riemannian symmetric space
of non-positive curvature and the observation likelihoods are Riemannian
Gaussians. The resulting algorithm decouples into a Riemannian Gaussian mixture
model estimation algorithm followed by a sequence of convex optimization
procedures. We demonstrate through examples that the learner can result in
significantly improved speed and numerical accuracy compared to existing
learners.
Related papers
- Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Riemannian Optimization for Variance Estimation in Linear Mixed Models [0.0]
We take a completely novel view on parameter estimation in linear mixed models by exploiting the intrinsic geometry of the parameter space.
Our approach yields a higher quality of the variance parameter estimates compared to existing approaches.
arXiv Detail & Related papers (2022-12-18T13:08:45Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - A Riemannian Newton Trust-Region Method for Fitting Gaussian Mixture
Models [0.0]
We introduce a formula for the Riemannian Hessian for Gaussian Mixture Models.
On top, we propose a new Newton Trust-Region method which outperforms current approaches both in terms of runtime and number of iterations.
arXiv Detail & Related papers (2021-04-30T12:48:32Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z) - Disentangling the Gauss-Newton Method and Approximate Inference for
Neural Networks [96.87076679064499]
We disentangle the generalized Gauss-Newton and approximate inference for Bayesian deep learning.
We find that the Gauss-Newton method simplifies the underlying probabilistic model significantly.
The connection to Gaussian processes enables new function-space inference algorithms.
arXiv Detail & Related papers (2020-07-21T17:42:58Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM)
The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time.
arXiv Detail & Related papers (2020-02-07T06:34:44Z) - Sparse Orthogonal Variational Inference for Gaussian Processes [34.476453597078894]
We introduce a new interpretation of sparse variational approximations for Gaussian processes using inducing points.
We show that this formulation recovers existing approximations and at the same time allows to obtain tighter lower bounds on the marginal likelihood and new variational inference algorithms.
arXiv Detail & Related papers (2019-10-23T15:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.