論文の概要: NP-Match: When Neural Processes meet Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2207.01066v1
- Date: Sun, 3 Jul 2022 15:24:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-06 08:46:08.800660
- Title: NP-Match: When Neural Processes meet Semi-Supervised Learning
- Title(参考訳): NP-Match: ニューラルネットワークが半教師付き学習に合うとき
- Authors: Jianfeng Wang, Thomas Lukasiewicz, Daniela Massiceti, Xiaolin Hu,
Vladimir Pavlovic, Alexandros Neophytou
- Abstract要約: 半教師付き学習(SSL)は近年広く研究されており、ラベル付きデータへの依存を減らすためにラベル付きデータを活用する効果的な方法である。
本研究では,ニューラルネットワーク(NP)を半教師付き画像分類タスクに調整し,NP-Matchと呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 133.009621275051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning (SSL) has been widely explored in recent years, and
it is an effective way of leveraging unlabeled data to reduce the reliance on
labeled data. In this work, we adjust neural processes (NPs) to the
semi-supervised image classification task, resulting in a new method named
NP-Match. NP-Match is suited to this task for two reasons. Firstly, NP-Match
implicitly compares data points when making predictions, and as a result, the
prediction of each unlabeled data point is affected by the labeled data points
that are similar to it, which improves the quality of pseudo-labels. Secondly,
NP-Match is able to estimate uncertainty that can be used as a tool for
selecting unlabeled samples with reliable pseudo-labels. Compared with
uncertainty-based SSL methods implemented with Monte Carlo (MC) dropout,
NP-Match estimates uncertainty with much less computational overhead, which can
save time at both the training and the testing phases. We conducted extensive
experiments on four public datasets, and NP-Match outperforms state-of-the-art
(SOTA) results or achieves competitive results on them, which shows the
effectiveness of NP-Match and its potential for SSL.
- Abstract(参考訳): 半教師付き学習(SSL)は近年広く研究されており、ラベル付きデータへの依存を減らすためにラベル付きデータを活用する効果的な方法である。
本研究では,ニューラルネットワーク(NP)を半教師付き画像分類タスクに調整し,NP-Matchと呼ばれる新しい手法を提案する。
NP-Matchは2つの理由でこのタスクに適している。
まず、NP-Matchは、予測を行う際のデータポイントを暗黙的に比較し、その結果、ラベルのない各データポイントの予測は、類似したラベル付きデータポイントに影響され、擬似ラベルの品質が向上する。
第二に、NP-Matchは、信頼できる擬似ラベルを持つ未ラベルのサンプルを選択するツールとして使用できる不確実性を推定することができる。
モンテカルロ(MC)のドロップアウトで実装された不確実性ベースのSSL手法と比較して、NP-Matchは計算オーバーヘッドがはるかに少ない不確実性を推定する。
我々は4つの公開データセットについて広範な実験を行い、NP-Matchは最新技術(SOTA)の結果よりも優れ、また、その上での競争結果が得られ、NP-Matchの有効性とSSLの可能性を示す。
関連論文リスト
- A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
半教師付き学習(SSL)はコンピュータビジョンにおける実践的な課題である。
Pseudo-label (PL) メソッド、例えば FixMatch や FreeMatch は SSL で State of The Art (SOTA) のパフォーマンスを取得する。
本稿では,複数の下位PLを理論的に保証された非偏りと低分散のPLに集約する,軽量なチャネルベースアンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:49:37Z) - KD-FixMatch: Knowledge Distillation Siamese Neural Networks [13.678635878305247]
KD-FixMatchは知識蒸留を取り入れてFixMatchの限界に対処する新しいSSLアルゴリズムである。
このアルゴリズムは,SNNの逐次訓練と同時訓練を組み合わせて,性能の向上と性能劣化の低減を図る。
以上の結果から,KD-FixMatchはFixMatchよりも訓練開始点が良く,モデル性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-09-11T21:11:48Z) - NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic
Segmentation [87.50830107535533]
半教師付きセマンティックセグメンテーションでは、トレーニング時にピクセルワイズラベルをラベル付けされていない画像に割り当てる。
モデルによるクラスワイズ確率分布から各画素の擬似ラベルを予測し,半教師付きセマンティックセマンティックセマンティクスへのアプローチ
本研究では,NPを半教師付きセマンティックセグメンテーションに適応させることにより一歩前進し,NP-SemiSegと呼ばれる新しいモデルを実現する。
論文 参考訳(メタデータ) (2023-08-05T12:42:15Z) - NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning [86.60013228560452]
半教師付き学習(SSL)は近年広く研究されており、ラベルのないデータを活用する効果的な方法である。
本研究では,ニューラルネットワーク(NP)を半教師付き画像分類タスクに調整し,NP-Matchと呼ばれる新しい手法を提案する。
NP-Matchは、予測を行う際のデータポイントを暗黙的に比較し、その結果、ラベル付けされていない各データポイントの予測がラベル付きデータポイントに影響される。
論文 参考訳(メタデータ) (2023-01-31T11:44:45Z) - Training Algorithm Matters for the Performance of Neural Network
Potential [4.774810604472842]
適応モーメント推定アルゴリズム(Adam)と拡張カルマンフィルタアルゴリズム(EKF)の2つの人気トレーニングアルゴリズムの性能を比較した。
その結果,EKFで訓練したNNPは,Adamと比較して伝達性が高く,学習率に敏感ではないことがわかった。
論文 参考訳(メタデータ) (2021-09-08T16:48:33Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
我々は、ラベルのない例を使ってモデルをトレーニングする半教師付き学習(SSL)アプローチを提案する。
提案手法であるDashは、ラベルなしデータ選択の観点から適応性を享受する。
論文 参考訳(メタデータ) (2021-09-01T23:52:29Z) - Matching Distributions via Optimal Transport for Semi-Supervised
Learning [31.533832244923843]
SSL(Semi-Supervised Learning)アプローチは、ラベルのないデータを使用する上で、影響力のあるフレームワークである。
本稿では、離散的経験的確率測度間の類似性の指標として最適輸送(OT)手法を採用する新しい手法を提案する。
提案手法を標準データセット上で,最先端のSSLアルゴリズムを用いて評価し,SSLアルゴリズムの優位性と有効性を示す。
論文 参考訳(メタデータ) (2020-12-04T11:15:14Z) - Bootstrapping Neural Processes [114.97111530885093]
ニューラル・プロセス(NP)は、ニューラルネットワークを用いた幅広いプロセスのクラスを暗黙的に定義する。
NPは、プロセスの不確実性は単一の潜在変数によってモデル化されるという仮定に依存している。
本稿では,ブートストラップを用いたNPファミリーの新規拡張であるBoostrapping Neural Process (BNP)を提案する。
論文 参考訳(メタデータ) (2020-08-07T02:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。