DecisioNet -- A Binary-Tree Structured Neural Network
- URL: http://arxiv.org/abs/2207.01127v2
- Date: Wed, 6 Jul 2022 18:21:02 GMT
- Title: DecisioNet -- A Binary-Tree Structured Neural Network
- Authors: Noam Gottlieb and Michael Werman
- Abstract summary: We present DecisioNet (DN), a binary-tree structured neural network.
We show that DN variants achieve similar accuracy while significantly reducing the computational cost of the original network.
- Score: 0.12183405753834559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) and decision trees (DTs) are both
state-of-the-art classifiers. DNNs perform well due to their representational
learning capabilities, while DTs are computationally efficient as they perform
inference along one route (root-to-leaf) that is dependent on the input data.
In this paper, we present DecisioNet (DN), a binary-tree structured neural
network. We propose a systematic way to convert an existing DNN into a DN to
create a lightweight version of the original model. DecisioNet takes the best
of both worlds - it uses neural modules to perform representational learning
and utilizes its tree structure to perform only a portion of the computations.
We evaluate various DN architectures, along with their corresponding baseline
models on the FashionMNIST, CIFAR10, and CIFAR100 datasets. We show that the DN
variants achieve similar accuracy while significantly reducing the
computational cost of the original network.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Deep neural network based adaptive learning for switched systems [0.3222802562733786]
We present a deep neural network based adaptive learning (DNN-AL) approach for switched systems.
observed datasets are adaptively decomposed into subsets, such as no structural changes within each subset.
Network parameters at previous iteration steps are reused to initialize networks for the later iteration steps.
arXiv Detail & Related papers (2022-07-11T04:51:58Z) - Masked Bayesian Neural Networks : Computation and Optimality [1.3649494534428745]
We propose a novel sparse Bayesian neural network (BNN) which searches a good deep neural network with an appropriate complexity.
We employ the masking variables at each node which can turn off some nodes according to the posterior distribution to yield a nodewise sparse DNN.
By analyzing several benchmark datasets, we illustrate that the proposed BNN performs well compared to other existing methods.
arXiv Detail & Related papers (2022-06-02T02:59:55Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
Deep neural networks (DNNs) play an increasingly important role in various computer systems.
In order to create these networks, engineers typically specify a desired topology, and then use an automated training algorithm to select the network's weights.
Here, we propose to address this challenge by harnessing recent advances in DNN verification.
arXiv Detail & Related papers (2021-05-28T07:53:50Z) - Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks [2.649890751459017]
This paper proposes a novel learning approach to obtain sparse fully connected layers in neural networks (NNs) automatically.
We design a switcher neural network (SNN) to optimize the structure of the task neural network (TNN)
arXiv Detail & Related papers (2021-03-26T11:29:40Z) - A Temporal Neural Network Architecture for Online Learning [0.6091702876917281]
Temporal neural networks (TNNs) communicate and process information encoded as relative spike times.
A TNN architecture is proposed and, as a proof-of-concept, TNN operation is demonstrated within the larger context of online supervised classification.
arXiv Detail & Related papers (2020-11-27T17:15:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.