NAS-BNN: Neural Architecture Search for Binary Neural Networks
- URL: http://arxiv.org/abs/2408.15484v1
- Date: Wed, 28 Aug 2024 02:17:58 GMT
- Title: NAS-BNN: Neural Architecture Search for Binary Neural Networks
- Authors: Zhihao Lin, Yongtao Wang, Jinhe Zhang, Xiaojie Chu, Haibin Ling,
- Abstract summary: We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
- Score: 55.058512316210056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary Neural Networks (BNNs) have gained extensive attention for their superior inferencing efficiency and compression ratio compared to traditional full-precision networks. However, due to the unique characteristics of BNNs, designing a powerful binary architecture is challenging and often requires significant manpower. A promising solution is to utilize Neural Architecture Search (NAS) to assist in designing BNNs, but current NAS methods for BNNs are relatively straightforward and leave a performance gap between the searched models and manually designed ones. To address this gap, we propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN. We first carefully design a search space based on the unique characteristics of BNNs. Then, we present three training strategies, which significantly enhance the training of supernet and boost the performance of all subnets. Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M. For instance, we achieve 68.20% top-1 accuracy on ImageNet with only 57M OPs. In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS COCO dataset. The source code and models will be released at https://github.com/VDIGPKU/NAS-BNN.
Related papers
- Spikeformer: A Novel Architecture for Training High-Performance
Low-Latency Spiking Neural Network [6.8125324121155275]
We propose a novel Transformer-based SNN,termed "Spikeformer",which outperforms its ANN counterpart on both static dataset and neuromorphic dataset.
Remarkably,our Spikeformer outperforms other SNNs on ImageNet by a large margin (i.e.more than 5%) and even outperforms its ANN counterpart by 3.1% and 2.2% on DVS-Gesture and ImageNet.
arXiv Detail & Related papers (2022-11-19T12:49:22Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
arXiv Detail & Related papers (2022-06-19T16:52:56Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
In this paper, we explore the SNN applications beyond classification and present semantic segmentation networks configured with spiking neurons.
arXiv Detail & Related papers (2021-10-14T21:53:03Z) - A comprehensive review of Binary Neural Network [2.918940961856197]
Binary Neural Network (BNN) method is an extreme application of convolutional neural network (CNN) parameter quantization.
Recent developments in BNN have led to a lot of algorithms and solutions that have helped address this issue.
arXiv Detail & Related papers (2021-10-11T22:44:15Z) - "BNN - BN = ?": Training Binary Neural Networks without Batch
Normalization [92.23297927690149]
Batch normalization (BN) is a key facilitator and considered essential for state-of-the-art binary neural networks (BNN)
We extend their framework to training BNNs, and for the first time demonstrate that BNs can be completed removed from BNN training and inference regimes.
arXiv Detail & Related papers (2021-04-16T16:46:57Z) - BCNN: Binary Complex Neural Network [16.82755328827758]
Binarized neural networks, or BNNs, show great promise in edge-side applications with resource limited hardware.
We introduce complex representation into the BNNs and propose Binary complex neural network.
BCNN improves BNN by strengthening its learning capability through complex representation and extending its applicability to complex-valued input data.
arXiv Detail & Related papers (2021-03-28T03:35:24Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.