VIP-SLAM: An Efficient Tightly-Coupled RGB-D Visual Inertial Planar SLAM
- URL: http://arxiv.org/abs/2207.01158v1
- Date: Mon, 4 Jul 2022 01:45:24 GMT
- Title: VIP-SLAM: An Efficient Tightly-Coupled RGB-D Visual Inertial Planar SLAM
- Authors: Danpeng Chen, Shuai Wang, Weijian Xie, Shangjin Zhai, Nan Wang, Hujun
Bao, Guofeng Zhang
- Abstract summary: We propose a tightly-coupled SLAM system fused with RGB, Depth, IMU and structured plane information.
We use homography constraints to eliminate the parameters of numerous plane points in the optimization.
The global bundle adjustment is nearly 2 times faster than the sparse points based SLAM algorithm.
- Score: 25.681256050571058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a tightly-coupled SLAM system fused with RGB,
Depth, IMU and structured plane information. Traditional sparse points based
SLAM systems always maintain a mass of map points to model the environment.
Huge number of map points bring us a high computational complexity, making it
difficult to be deployed on mobile devices. On the other hand, planes are
common structures in man-made environment especially in indoor environments. We
usually can use a small number of planes to represent a large scene. So the
main purpose of this article is to decrease the high complexity of sparse
points based SLAM. We build a lightweight back-end map which consists of a few
planes and map points to achieve efficient bundle adjustment (BA) with an equal
or better accuracy. We use homography constraints to eliminate the parameters
of numerous plane points in the optimization and reduce the complexity of BA.
We separate the parameters and measurements in homography and point-to-plane
constraints and compress the measurements part to further effectively improve
the speed of BA. We also integrate the plane information into the whole system
to realize robust planar feature extraction, data association, and global
consistent planar reconstruction. Finally, we perform an ablation study and
compare our method with similar methods in simulation and real environment
data. Our system achieves obvious advantages in accuracy and efficiency. Even
if the plane parameters are involved in the optimization, we effectively
simplify the back-end map by using planar structures. The global bundle
adjustment is nearly 2 times faster than the sparse points based SLAM
algorithm.
Related papers
- Plane2Depth: Hierarchical Adaptive Plane Guidance for Monocular Depth Estimation [38.81275292687583]
We propose Plane2Depth, which adaptively utilizes plane information to improve depth prediction within a hierarchical framework.
In the proposed plane guided depth generator (PGDG), we design a set of plane queries as prototypes to softly model planes in the scene and predict per-pixel plane coefficients.
In the proposed adaptive plane query aggregation (APGA) module, we introduce a novel feature interaction approach to improve the aggregation of multi-scale plane features.
arXiv Detail & Related papers (2024-09-04T07:45:06Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - PAS-SLAM: A Visual SLAM System for Planar Ambiguous Scenes [41.47703182059505]
We propose a visual SLAM system based on planar features designed for planar ambiguous scenes.
We present an integrated data association strategy that combines plane parameters, semantic information, projection IoU, and non-parametric tests.
Finally, we design a set of multi-constraint factor graphs for camera pose optimization.
arXiv Detail & Related papers (2024-02-09T01:34:26Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for non-rigid shapes.
We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets.
arXiv Detail & Related papers (2023-08-16T14:25:30Z) - Structure PLP-SLAM: Efficient Sparse Mapping and Localization using
Point, Line and Plane for Monocular, RGB-D and Stereo Cameras [13.693353009049773]
This paper demonstrates a visual SLAM system that utilizes point and line cloud for robust camera localization, simultaneously, with an embedded piece-wise planar reconstruction (PPR) module.
We address the challenge of reconstructing geometric primitives with scale ambiguity by proposing several run-time optimizations on the reconstructed lines and planes.
The results show that our proposed SLAM tightly incorporates the semantic features to boost both tracking as well as backend optimization.
arXiv Detail & Related papers (2022-07-13T09:05:35Z) - Keeping Less is More: Point Sparsification for Visual SLAM [1.370633147306388]
This study proposes an efficient graph optimization for sparsifying map points in SLAM systems.
Specifically, we formulate a maximum pose-visibility and maximum spatial diversity problem as a minimum-cost maximum-flow graph optimization problem.
The proposed method works as an additional step in existing SLAM systems, so it can be used in both conventional or learning based SLAM systems.
arXiv Detail & Related papers (2022-07-01T06:39:38Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
We propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments.
We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models.
A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability.
arXiv Detail & Related papers (2021-09-14T07:24:53Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Stereo Plane SLAM Based on Intersecting Lines [10.892478925743967]
Plane feature is stable landmark to reduce drift error in SLAM system.
We propose a novel method to compute plane parameters using intersecting lines extracted from stereo image.
arXiv Detail & Related papers (2020-08-19T01:35:49Z) - Augmented Parallel-Pyramid Net for Attention Guided Pose-Estimation [90.28365183660438]
This paper proposes an augmented parallel-pyramid net with attention partial module and differentiable auto-data augmentation.
We define a new pose search space where the sequences of data augmentations are formulated as a trainable and operational CNN component.
Notably, our method achieves the top-1 accuracy on the challenging COCO keypoint benchmark and the state-of-the-art results on the MPII datasets.
arXiv Detail & Related papers (2020-03-17T03:52:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.