A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils
- URL: http://arxiv.org/abs/2412.09399v2
- Date: Fri, 13 Dec 2024 07:40:02 GMT
- Title: A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils
- Authors: Jacob Helwig, Xuan Zhang, Haiyang Yu, Shuiwang Ji,
- Abstract summary: aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils.
Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics.
To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation.
These design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall.
- Score: 61.60175086194333
- License:
- Abstract: Computational modeling of aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils. Deep surrogate models have emerged as purely data-driven approaches that learn direct mappings from simulation conditions to solutions based on either simulation or experimental data. Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics. To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation. Under this framework, we first obtain a representation of the geometry in the form of a latent graph on the airfoil surface. We subsequently propagate this representation to all collocation points through message passing on a directed, bipartite graph. We demonstrate that this framework supports efficient training by downsampling the solution mesh while avoiding distribution shifts at test time when evaluated on the full mesh. To enable our model to be able to distinguish between distinct spatial regimes of dynamics relative to the airfoil, we represent mesh points in both a leading edge and trailing edge coordinate system. We further enhance the expressiveness of our coordinate system representations by embedding our hybrid Polar-Cartesian coordinates using sinusoidal and spherical harmonics bases. We additionally find that a change of basis to canonicalize input representations with respect to inlet velocity substantially improves generalization. Altogether, these design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
Related papers
- Equation-informed data-driven identification of flow budgets and dynamics [0.0]
We propose a novel hybrid approach to flow clustering.
It consists of characterising each sample point of the system with equation-based features.
The algorithm is implemented in both the Eulerian and Lagrangian frameworks.
arXiv Detail & Related papers (2024-11-14T15:59:41Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field.
We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives.
arXiv Detail & Related papers (2023-08-10T06:40:19Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
Estimating fluid dynamics is a notoriously hard problem to solve.
We introduce a new model, method and benchmark for the problem.
We show that our transformer outperforms state-of-the-art performance on, both, existing synthetic and real datasets.
arXiv Detail & Related papers (2023-02-16T12:59:08Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic Shape
Optimization [9.432375767178284]
We propose a data-driven shape encoding and generating method, which automatically learns representations from existing airfoils and uses the learned representations to generate new airfoils.
Our model is built upon VAEGAN, a neural network that combines Variational Autoencoder with Generative Adversarial Network and is trained by the gradient-based technique.
arXiv Detail & Related papers (2021-01-12T21:25:45Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.