Cybersecurity: Past, Present and Future
- URL: http://arxiv.org/abs/2207.01227v3
- Date: Sun, 3 Mar 2024 04:00:37 GMT
- Title: Cybersecurity: Past, Present and Future
- Authors: Shahid Alam,
- Abstract summary: Main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics.
The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.
Related papers
- Different Cybercrimes and their Solution for Common People [0.0]
This paper explores cybercrime trends and highlights the need for cybercrime awareness (cyberawareness) to mitigate vulnerabilities.
We present a list of 31 technical as well as non-technical solutions considering that a "common man" may not be technologically aware.
arXiv Detail & Related papers (2024-10-08T04:23:11Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - knowCC: Knowledge, awareness of computer & cyber ethics between CS/non-CS university students [0.0]
This research focuses on the relations between cybersecurity awareness, cyber knowledge, computer ethics, cyber ethics, and cyber behavior.
The findings express that while internet users are alert of cyber threats, they only take the most elementary and easy-to-implement precautions.
arXiv Detail & Related papers (2023-10-19T12:29:26Z) - Securing the Digital World: Protecting smart infrastructures and digital
industries with Artificial Intelligence (AI)-enabled malware and intrusion
detection [0.0]
cybercrime has emerged as a global threat to governments, businesses, and civil societies.
This paper investigates AI-based cyber threat detection to protect our modern digital ecosystems.
arXiv Detail & Related papers (2023-10-15T09:35:56Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Coordinated Science Laboratory 70th Anniversary Symposium: The Future of
Computing [80.72844751804166]
In 2021, the Coordinated Science Laboratory CSL hosted the Future of Computing Symposium to celebrate its 70th anniversary.
We summarize the major technological points, insights, and directions that speakers brought forward during the symposium.
Participants discussed topics related to new computing paradigms, technologies, algorithms, behaviors, and research challenges to be expected in the future.
arXiv Detail & Related papers (2022-10-04T17:32:27Z) - Artificial Intelligence for Cybersecurity: Threats, Attacks and
Mitigation [1.80476943513092]
The surging menace of cyber-attacks got a jolt from the recent advancements in Artificial Intelligence.
The intervention of AI not only automates a particular task but also improves efficiency by many folds.
This article discusses cybersecurity and cyber threats along with both conventional and intelligent ways of defense against cyber-attacks.
arXiv Detail & Related papers (2022-09-27T15:20:23Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.