Geometric Origin of Intrinsic Spin Hall Effect in an Inhomogeneous
Electric Field
- URL: http://arxiv.org/abs/2207.01500v1
- Date: Tue, 28 Jun 2022 03:32:13 GMT
- Title: Geometric Origin of Intrinsic Spin Hall Effect in an Inhomogeneous
Electric Field
- Authors: Anwei Zhang and Jun-Won Rhim
- Abstract summary: We show how the inhomogeneous electric field affects the spin Hall effect.
It is shown that the conductivity obtained from the conventional wave packet approach cannot be fully consistent with the one predicted by the Kubo-Greenwood formula.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the spin Hall effect has received great attention because of
its potential application in spintronics and quantum information processing and
storage. However, this effect is usually studied under the external homogeneous
electric field. Understanding how the inhomogeneous electric field affects the
spin Hall effect is still lacking. Here, we investigate a two-dimensional
two-band time-reversal symmetric system and give an expression for the
intrinsic spin Hall conductivity in the presence of the inhomogeneous electric
field, which is shown to be expressed through gauge-invariant geometric
quantities. On the other hand, when people get physical intuition on transport
phenomena from the wave packet, one issue appears. It is shown that the
conductivity obtained from the conventional wave packet approach cannot be
fully consistent with the one predicted by the Kubo-Greenwood formula. Here, we
attempt to solve this problem.
Related papers
- Modified attractive inverse-square potential in the induced electric
dipole system [0.0]
Investigation unveils the emergence of a distinct modified attractive-inverse square potential.
We present compelling evidence for the realization of a discrete energy spectrum within this intricate system.
arXiv Detail & Related papers (2024-02-06T10:48:44Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Electrodynamic Aharonov-Bohm effect [0.0]
We propose an electrodynamic Aharonov-Bohm scheme where a nonzero AB phase difference appears even if the interferometer paths do not enclose a magnetic flux.
In the proposal, the current in a solenoid outside the interferometer varies in time while the quantum particle is in a superposition state inside two Faraday cages.
arXiv Detail & Related papers (2023-02-28T13:07:24Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Gauge invariance of the local phase in the Aharonov-Bohm interference:
quantum electrodynamic approach [0.0]
In the Aharonov-Bohm (AB) effect, interference fringes are observed for a charged particle in the absence of the local overlap with the external electromagnetic field.
This notion of the apparent nonlocality of the interaction or the significant role of the potential has recently been challenged and are under debate.
The quantum electrodynamic approach provides a microscopic picture of the characteristics of the interaction between a charge and an external field.
arXiv Detail & Related papers (2022-06-17T08:31:51Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Time-reversal symmetry breaking in a square lattice [0.0]
The bulk conductivity of a two-dimensional system is studied assuming that quantum interference effects break time-reversal symmetry.
The study is carried out by direct diagonalization in order to explore the nonlinear-response regime.
arXiv Detail & Related papers (2020-09-21T16:29:25Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.