Evolution of a twisted electron wave packet perturbed by an inhomogeneous electric field
- URL: http://arxiv.org/abs/2506.06548v2
- Date: Wed, 11 Jun 2025 20:46:28 GMT
- Title: Evolution of a twisted electron wave packet perturbed by an inhomogeneous electric field
- Authors: A. Kudlis, I. A. Aleksandrov, N. N. Rosanov,
- Abstract summary: We study the nonrelativistic dynamics of a spatially-localized electron LG wave packet interacting with an inhomogeneous external electric field.<n>The electric field may significantly alter the wave packet's structure and distort its qualitative form.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Laguerre-Gaussian (LG) wave packets, known for their vortex structure and nonzero orbital angular momentum (OAM), are of great interest in various scientific fields. Here we study the nonrelativistic dynamics of a spatially-localized electron LG wave packet interacting with an inhomogeneous external electric field that violates the axial symmetry of the initial wave function. We focus on the analysis of the electron density and demonstrate how it is affected by the external field. Within the first order of perturbation theory, we calculate the electron wave function and reveal that the electric field may significantly alter the wave packet's structure and distort its qualitative form. We demonstrate that due to the interaction with the external field, the degenerate zeros of the initial wave function located on the $z$ axis split into multiple nondegenerate nodes in the transverse plane representing separate single-charge vortices. This mechanism resembles the analogous effects known in topological optics. These findings provide new insights into controlling and manipulating twisted matter beams and into their possible instabilities.
Related papers
- Waveguides in a quantum perspective [49.1574468325115]
Solid state quantum devices, operated at dilution cryostat temperatures, are relying on microwave signals to drive and read-out their quantum states.<n>Here we report on the quantum theory that describes the simplest Cartesian-type geometries: parallel plates, and rectangular tubes.
arXiv Detail & Related papers (2025-05-20T12:42:07Z) - Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Evanescent Electron Wave Spin [2.977255700811213]
This study demonstrates the existence of an evanescent electron wave outside both finite and infinite quantum wells.
We show that this evanescent wave shares the spin characteristics of the wave confined within the well.
Our findings suggest that the electron cannot be confined to a mathematical singularity and that quantum information, or quantum entropy, can leak through any confinement.
arXiv Detail & Related papers (2023-09-29T15:32:37Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Non-relativistic quantum particles interacting with pseudoharmonic-type
potential under flux field in a topological defect geometry [0.0]
We investigate the quantum motions of non-relativistic particles interacting with a potential in the presence of the Aharonov-Bohm flux field.
Our findings reveal that the eigenvalue solutions are significantly influenced by the topological defect characterized by the parameter $beta$.
This influence manifests as a shift in the energy spectrum, drawing parallels to the gravitational analog of the Aharonov-Bohm effect.
arXiv Detail & Related papers (2023-02-01T17:45:02Z) - Inelastic Electron Scattering at a Single-Beam Structured Light Wave [0.0]
We demonstrate the inelastic scattering of slow-electron wavepackets at a propagating Hermite-Gaussian light beam.
This effect opens up a new platform for manipulating the electron wavepacket by utilizing the vast landscape of structured electromagnetic fields.
arXiv Detail & Related papers (2022-12-20T14:04:22Z) - Electron quantum optics with beam splitters and waveguides in Dirac
Matter [0.0]
splitting of the electron wavefunction is explored for systems supporting Dirac type physics.
Electron beam-splitters and superfocusers are analysed along with propagation through nanoribbons.
arXiv Detail & Related papers (2022-04-18T13:24:06Z) - Electron vortex beams in non-uniform magnetic fields [0.0]
We consider the quantum theory of paraxial non-relativistic electron beams in non-uniform magnetic fields, such as the Glaser field.
We find the wave function of an electron from such a beam and show that it is a joint eigenstate of two ($z$-dependent) commuting gauge-independent operators.
arXiv Detail & Related papers (2020-11-23T21:10:02Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Paraxial wave function and Gouy phase for a relativistic electron in a
uniform magnetic field [68.8204255655161]
A connection between quantum mechanics and paraxial equations is established for a Dirac particle in external fields.
The paraxial form of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.
arXiv Detail & Related papers (2020-03-08T13:14:44Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.