Consistency of Neural Networks with Regularization
- URL: http://arxiv.org/abs/2207.01538v1
- Date: Wed, 22 Jun 2022 23:33:39 GMT
- Title: Consistency of Neural Networks with Regularization
- Authors: Xiaoxi Shen, Jinghang Lin
- Abstract summary: This paper proposes the general framework of neural networks with regularization and prove its consistency.
Two types of activation functions: hyperbolic function(Tanh) and rectified linear unit(ReLU) have been taken into consideration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural networks have attracted a lot of attention due to its success in
applications such as natural language processing and computer vision. For large
scale data, due to the tremendous number of parameters in neural networks,
overfitting is an issue in training neural networks. To avoid overfitting, one
common approach is to penalize the parameters especially the weights in neural
networks. Although neural networks has demonstrated its advantages in many
applications, the theoretical foundation of penalized neural networks has not
been well-established. Our goal of this paper is to propose the general
framework of neural networks with regularization and prove its consistency.
Under certain conditions, the estimated neural network will converge to true
underlying function as the sample size increases. The method of sieves and the
theory on minimal neural networks are used to overcome the issue of
unidentifiability for the parameters. Two types of activation functions:
hyperbolic tangent function(Tanh) and rectified linear unit(ReLU) have been
taken into consideration. Simulations have been conducted to verify the
validation of theorem of consistency.
Related papers
- Verified Neural Compressed Sensing [58.98637799432153]
We develop the first (to the best of our knowledge) provably correct neural networks for a precise computational task.
We show that for modest problem dimensions (up to 50), we can train neural networks that provably recover a sparse vector from linear and binarized linear measurements.
We show that the complexity of the network can be adapted to the problem difficulty and solve problems where traditional compressed sensing methods are not known to provably work.
arXiv Detail & Related papers (2024-05-07T12:20:12Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Using Cooperative Game Theory to Prune Neural Networks [7.3959659158152355]
We show how solution concepts from cooperative game theory can be used to tackle the problem of pruning neural networks.
We introduce a method called Game Theory Assisted Pruning (GTAP), which reduces the neural network's size while preserving its predictive accuracy.
arXiv Detail & Related papers (2023-11-17T11:48:10Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
We identify the close connection between matrix spectrum learning and neural network training for dense and convolutional layers.
We propose a matrix sparsification algorithm tailored for neural network pruning that yields better pruning result.
arXiv Detail & Related papers (2023-07-18T05:39:32Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
We study neural networks, a main type of neural network in use.
We prove that as the width of an optimized neural network tends to infinity, its predictive variance on the training set decreases to zero.
arXiv Detail & Related papers (2022-01-30T04:52:31Z) - Fourier Neural Networks for Function Approximation [2.840363325289377]
It is proved extensively that neural networks are universal approximators.
It is specifically proved that for a narrow neural network to approximate a function which is otherwise implemented by a deep Neural network, the network take exponentially large number of neurons.
arXiv Detail & Related papers (2021-10-21T09:30:26Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Deep Kronecker neural networks: A general framework for neural networks
with adaptive activation functions [4.932130498861987]
We propose a new type of neural networks, Kronecker neural networks (KNNs), that form a general framework for neural networks with adaptive activation functions.
Under suitable conditions, KNNs induce a faster decay of the loss than that by the feed-forward networks.
arXiv Detail & Related papers (2021-05-20T04:54:57Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
We show that overparametrized neural networks could meet the constraints.
Key ingredient of building a fair neural network classifier is establishing no-regret analysis for neural networks.
arXiv Detail & Related papers (2020-12-30T18:46:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.