Using Cooperative Game Theory to Prune Neural Networks
- URL: http://arxiv.org/abs/2311.10468v1
- Date: Fri, 17 Nov 2023 11:48:10 GMT
- Title: Using Cooperative Game Theory to Prune Neural Networks
- Authors: Mauricio Diaz-Ortiz Jr, Benjamin Kempinski, Daphne Cornelisse, Yoram
Bachrach, Tal Kachman
- Abstract summary: We show how solution concepts from cooperative game theory can be used to tackle the problem of pruning neural networks.
We introduce a method called Game Theory Assisted Pruning (GTAP), which reduces the neural network's size while preserving its predictive accuracy.
- Score: 7.3959659158152355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how solution concepts from cooperative game theory can be used to
tackle the problem of pruning neural networks.
The ever-growing size of deep neural networks (DNNs) increases their
performance, but also their computational requirements. We introduce a method
called Game Theory Assisted Pruning (GTAP), which reduces the neural network's
size while preserving its predictive accuracy. GTAP is based on eliminating
neurons in the network based on an estimation of their joint impact on the
prediction quality through game theoretic solutions. Specifically, we use a
power index akin to the Shapley value or Banzhaf index, tailored using a
procedure similar to Dropout (commonly used to tackle overfitting problems in
machine learning).
Empirical evaluation of both feedforward networks and convolutional neural
networks shows that this method outperforms existing approaches in the achieved
tradeoff between the number of parameters and model accuracy.
Related papers
- Verified Neural Compressed Sensing [58.98637799432153]
We develop the first (to the best of our knowledge) provably correct neural networks for a precise computational task.
We show that for modest problem dimensions (up to 50), we can train neural networks that provably recover a sparse vector from linear and binarized linear measurements.
We show that the complexity of the network can be adapted to the problem difficulty and solve problems where traditional compressed sensing methods are not known to provably work.
arXiv Detail & Related papers (2024-05-07T12:20:12Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Guaranteed Quantization Error Computation for Neural Network Model
Compression [2.610470075814367]
Neural network model compression techniques can address the computation issue of deep neural networks on embedded devices in industrial systems.
A merged neural network is built from a feedforward neural network and its quantized version to produce the exact output difference between two neural networks.
arXiv Detail & Related papers (2023-04-26T20:21:54Z) - Consistency of Neural Networks with Regularization [0.0]
This paper proposes the general framework of neural networks with regularization and prove its consistency.
Two types of activation functions: hyperbolic function(Tanh) and rectified linear unit(ReLU) have been taken into consideration.
arXiv Detail & Related papers (2022-06-22T23:33:39Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
We study neural networks, a main type of neural network in use.
We prove that as the width of an optimized neural network tends to infinity, its predictive variance on the training set decreases to zero.
arXiv Detail & Related papers (2022-01-30T04:52:31Z) - Neuron-based Pruning of Deep Neural Networks with Better Generalization
using Kronecker Factored Curvature Approximation [18.224344440110862]
The proposed algorithm directs the parameters of the compressed model toward a flatter solution by exploring the spectral radius of Hessian.
Our result shows that it improves the state-of-the-art results on neuron compression.
The method is able to achieve very small networks with small accuracy across different neural network models.
arXiv Detail & Related papers (2021-11-16T15:55:59Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
We propose an efficient neural network design for estimating measurement error models.
We use a fully connected feed-forward neural network to approximate the regression function $f(x)$.
We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods.
arXiv Detail & Related papers (2020-07-15T06:05:37Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.