Clifford Circuit Initialisation for Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2207.01539v1
- Date: Mon, 4 Jul 2022 15:59:33 GMT
- Title: Clifford Circuit Initialisation for Variational Quantum Algorithms
- Authors: M. H. Cheng, K. E. Khosla, C. N. Self, M. Lin, B. X. Li, A. C. Medina,
and M. S. Kim
- Abstract summary: We present an initialisation method for variational quantum algorithms applicable to intermediate scale quantum computers.
We numerically demonstrate the effectiveness of the technique, and how it depends on Hamiltonian structure, number of qubits and circuit depth.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an initialisation method for variational quantum algorithms
applicable to intermediate scale quantum computers. The method uses simulated
annealing of the efficiently simulable Clifford parameter points as a
pre-optimisation to find a low energy initial condition. We numerically
demonstrate the effectiveness of the technique, and how it depends on
Hamiltonian structure, number of qubits and circuit depth. While a range of
different problems are considered, we note that the method is particularly
useful for quantum chemistry problems. This presented method could help achieve
a quantum advantage in noisy or fault-tolerant intermediate scale devices, even
though we prove in general that the method is not arbitrarily scalable.
Related papers
- Solving eigenvalue problems obtained by the finite element method on a quantum annealer using only a few qubits [0.0]
One of the main obstacles for achieving a practical quantum advantage in quantum computing lies in the relatively small number of qubits currently available in quantum hardware.
We show how to circumvent this problem in the context of eigenvalue problems obtained by the finite element method.
As an example, we apply AQAE to eigenvalue problems that are relevant in a wide range of contexts, such as electromagnetism, acoustics and seismology.
arXiv Detail & Related papers (2024-10-17T16:39:03Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quadratic Clifford expansion for efficient benchmarking and
initialization of variational quantum algorithms [0.8808007156832224]
Variational quantum algorithms are considered to be appealing applications of near-term quantum computers.
We propose a perturbative approach for efficient benchmarking of variational quantum algorithms.
arXiv Detail & Related papers (2020-11-19T16:09:00Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.