Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization
- URL: http://arxiv.org/abs/2207.01555v1
- Date: Mon, 4 Jul 2022 16:22:44 GMT
- Title: Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization
- Authors: Yuting Tang, Nan Lu, Tianyi Zhang, Masashi Sugiyama
- Abstract summary: In this paper, we aim to learn an accurate classifier without any class labels.
We first derive an unbiased estimator of the classification risk that can be estimated from the given unlabeled sets.
We then find that the classifier obtained as such tends to cause overfitting as its empirical risks go negative during training.
Experiments demonstrate that our method effectively mitigates overfitting and outperforms state-of-the-art methods for learning from multiple unlabeled sets.
- Score: 80.54710259664698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed a great success of supervised deep learning,
where predictive models were trained from a large amount of fully labeled data.
However, in practice, labeling such big data can be very costly and may not
even be possible for privacy reasons. Therefore, in this paper, we aim to learn
an accurate classifier without any class labels. More specifically, we consider
the case where multiple sets of unlabeled data and only their class priors,
i.e., the proportions of each class, are available. Under this problem setup,
we first derive an unbiased estimator of the classification risk that can be
estimated from the given unlabeled sets and theoretically analyze the
generalization error of the learned classifier. We then find that the
classifier obtained as such tends to cause overfitting as its empirical risks
go negative during training. To prevent overfitting, we further propose a
partial risk regularization that maintains the partial risks with respect to
unlabeled datasets and classes to certain levels. Experiments demonstrate that
our method effectively mitigates overfitting and outperforms state-of-the-art
methods for learning from multiple unlabeled sets.
Related papers
- Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
Complementary-label learning is a weakly supervised learning problem.
We propose a consistent approach that does not rely on the uniform distribution assumption.
We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems.
arXiv Detail & Related papers (2023-11-27T02:59:17Z) - Can Class-Priors Help Single-Positive Multi-Label Learning? [40.312419865957224]
Single-positive multi-label learning (SPMLL) is a typical weakly supervised multi-label learning problem.
Class-priors estimator is introduced, which could estimate the class-priors that are theoretically guaranteed to converge to the ground-truth class-priors.
Based on the estimated class-priors, an unbiased risk estimator for classification is derived, and the corresponding risk minimizer could be guaranteed to approximately converge to the optimal risk minimizer on fully supervised data.
arXiv Detail & Related papers (2023-09-25T05:45:57Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
This paper presents a novel universal method of CFAO, which holds an unbiased estimator of the classification risk for arbitrary losses.
Our proposed method not only guarantees the risk consistency due to the unbiased risk estimator but also can be compatible with arbitrary losses.
arXiv Detail & Related papers (2023-06-20T07:22:01Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
We present a technique for certifying whether linear regression models are pointwise-robust to label bias in a training dataset.
We show how to solve this problem exactly for individual test points, and provide an approximate but more scalable method.
We also unearth gaps in bias-robustness, such as high levels of non-robustness for certain bias assumptions on some datasets.
arXiv Detail & Related papers (2022-06-07T20:47:07Z) - Learning from Label Proportions by Learning with Label Noise [30.7933303912474]
Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags.
We provide a theoretically grounded approach to LLP based on a reduction to learning with label noise.
Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures.
arXiv Detail & Related papers (2022-03-04T18:52:21Z) - Learning with Proper Partial Labels [87.65718705642819]
Partial-label learning is a kind of weakly-supervised learning with inexact labels.
We show that this proper partial-label learning framework includes many previous partial-label learning settings.
We then derive a unified unbiased estimator of the classification risk.
arXiv Detail & Related papers (2021-12-23T01:37:03Z) - Multi-class Probabilistic Bounds for Self-learning [13.875239300089861]
Pseudo-labeling is prone to error and runs the risk of adding noisy labels into unlabeled training data.
We present a probabilistic framework for analyzing self-learning in the multi-class classification scenario with partially labeled data.
arXiv Detail & Related papers (2021-09-29T13:57:37Z) - RATT: Leveraging Unlabeled Data to Guarantee Generalization [96.08979093738024]
We introduce a method that leverages unlabeled data to produce generalization bounds.
We prove that our bound is valid for 0-1 empirical risk minimization.
This work provides practitioners with an option for certifying the generalization of deep nets even when unseen labeled data is unavailable.
arXiv Detail & Related papers (2021-05-01T17:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.