Certifying Data-Bias Robustness in Linear Regression
- URL: http://arxiv.org/abs/2206.03575v1
- Date: Tue, 7 Jun 2022 20:47:07 GMT
- Title: Certifying Data-Bias Robustness in Linear Regression
- Authors: Anna P. Meyer, Aws Albarghouthi and Loris D'Antoni
- Abstract summary: We present a technique for certifying whether linear regression models are pointwise-robust to label bias in a training dataset.
We show how to solve this problem exactly for individual test points, and provide an approximate but more scalable method.
We also unearth gaps in bias-robustness, such as high levels of non-robustness for certain bias assumptions on some datasets.
- Score: 12.00314910031517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Datasets typically contain inaccuracies due to human error and societal
biases, and these inaccuracies can affect the outcomes of models trained on
such datasets. We present a technique for certifying whether linear regression
models are pointwise-robust to label bias in the training dataset, i.e.,
whether bounded perturbations to the labels of a training dataset result in
models that change the prediction of test points. We show how to solve this
problem exactly for individual test points, and provide an approximate but more
scalable method that does not require advance knowledge of the test point. We
extensively evaluate both techniques and find that linear models -- both
regression- and classification-based -- often display high levels of
bias-robustness. However, we also unearth gaps in bias-robustness, such as high
levels of non-robustness for certain bias assumptions on some datasets.
Overall, our approach can serve as a guide for when to trust, or question, a
model's output.
Related papers
- Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Uncertainty in Contrastive Learning: On the Predictability of Downstream
Performance [7.411571833582691]
We study whether the uncertainty of such a representation can be quantified for a single datapoint in a meaningful way.
We show that this goal can be achieved by directly estimating the distribution of the training data in the embedding space.
arXiv Detail & Related papers (2022-07-19T15:44:59Z) - Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization [80.54710259664698]
In this paper, we aim to learn an accurate classifier without any class labels.
We first derive an unbiased estimator of the classification risk that can be estimated from the given unlabeled sets.
We then find that the classifier obtained as such tends to cause overfitting as its empirical risks go negative during training.
Experiments demonstrate that our method effectively mitigates overfitting and outperforms state-of-the-art methods for learning from multiple unlabeled sets.
arXiv Detail & Related papers (2022-07-04T16:22:44Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Certifying Robustness to Programmable Data Bias in Decision Trees [12.060443368097102]
We certify that models produced by a learning learner are pointwise-robust to potential dataset biases.
Our approach allows specifying bias models across a variety of dimensions.
We evaluate our approach on datasets commonly used in the fairness literature.
arXiv Detail & Related papers (2021-10-08T20:15:17Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
arXiv Detail & Related papers (2021-09-14T10:22:21Z) - Self Training with Ensemble of Teacher Models [8.257085583227695]
In order to train robust deep learning models, large amounts of labelled data is required.
In the absence of such large repositories of labelled data, unlabeled data can be exploited for the same.
Semi-Supervised learning aims to utilize such unlabeled data for training classification models.
arXiv Detail & Related papers (2021-07-17T09:44:09Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - On the Role of Dataset Quality and Heterogeneity in Model Confidence [27.657631193015252]
Safety-critical applications require machine learning models that output accurate and calibrated probabilities.
Uncalibrated deep networks are known to make over-confident predictions.
We study the impact of dataset quality by studying the impact of dataset size and the label noise on the model confidence.
arXiv Detail & Related papers (2020-02-23T05:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.