Accurate RNA 3D structure prediction using a language model-based deep learning approach
- URL: http://arxiv.org/abs/2207.01586v3
- Date: Thu, 02 Jan 2025 18:03:15 GMT
- Title: Accurate RNA 3D structure prediction using a language model-based deep learning approach
- Authors: Tao Shen, Zhihang Hu, Siqi Sun, Di Liu, Felix Wong, Jiuming Wang, Jiayang Chen, Yixuan Wang, Liang Hong, Jin Xiao, Liangzhen Zheng, Tejas Krishnamoorthi, Irwin King, Sheng Wang, Peng Yin, James J. Collins, Yu Li,
- Abstract summary: RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.
RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
- Score: 50.193512039121984
- License:
- Abstract: Accurate prediction of RNA three-dimensional (3D) structure remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to scarcity of experimentally determined data, complicates computational prediction efforts. Here, we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pre-trained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate RhoFold+'s superiority over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and inter-helical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
Related papers
- RNA-GPT: Multimodal Generative System for RNA Sequence Understanding [6.611255836269348]
RNAs are essential molecules that carry genetic information vital for life.
Despite this importance, RNA research is often hindered by the vast literature available on the topic.
We introduce RNA-GPT, a multi-modal RNA chat model designed to simplify RNA discovery.
arXiv Detail & Related papers (2024-10-29T06:19:56Z) - Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLM uses large datasets of RNA sequences to learn, in a self-supervised way, how to represent each RNA base with a semantically rich numerical vector.
Among them, predicting the secondary structure is a fundamental task for uncovering RNA functional mechanisms.
We present a comprehensive experimental analysis of several pre-trained RNA-LLM, comparing them for the RNA secondary structure prediction task in a unified deep learning framework.
arXiv Detail & Related papers (2024-10-21T17:12:06Z) - Predicting Distance matrix with large language models [1.8855270809505869]
RNA structure prediction remains a significant challenge due to data limitations.
Traditional methods such as nuclear magnetic resonance spectroscopy, Xray crystallography, and electron microscopy are expensive and time consuming.
Distance maps provide a simplified representation of spatial constraints between nucleotides, capturing essential relationships without requiring a full 3D model.
arXiv Detail & Related papers (2024-09-24T10:28:55Z) - RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design [35.66059762160962]
We introduce RNA-FrameFlow, the first generative model for 3D RNA backbone design.
We formulate RNA structures as a set of rigid-body frames and associated loss functions.
To tackle the lack of diversity in 3D RNA datasets, we explore training with structural clustering and cropping augmentations.
arXiv Detail & Related papers (2024-06-19T21:06:44Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - 3D-based RNA function prediction tools in rnaglib [2.048226951354646]
Building datasets of RNA 3D structures and making appropriate modeling choices remains time-consuming and lacks standardization.
We describe the use of rnaglib, to train supervised and unsupervised machine learning-based function prediction models on datasets of RNA 3D structures.
arXiv Detail & Related papers (2024-02-14T17:22:03Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
We introduce RFold, a method that learns to predict the most matching K-Rook solution from the given sequence.
RFold achieves competitive performance and about eight times faster inference efficiency than state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-02T16:34:56Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
In this paper, we propose an end-to-end deep learning model, called E2Efold, for RNA secondary structure prediction.
The key idea of E2Efold is to directly predict the RNA base-pairing matrix, and use an unrolled algorithm for constrained programming as the template for deep architectures to enforce constraints.
With comprehensive experiments on benchmark datasets, we demonstrate the superior performance of E2Efold.
arXiv Detail & Related papers (2020-02-13T23:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.