Predicting Distance matrix with large language models
- URL: http://arxiv.org/abs/2409.16333v1
- Date: Tue, 24 Sep 2024 10:28:55 GMT
- Title: Predicting Distance matrix with large language models
- Authors: Jiaxing Yang
- Abstract summary: RNA structure prediction remains a significant challenge due to data limitations.
Traditional methods such as nuclear magnetic resonance spectroscopy, Xray crystallography, and electron microscopy are expensive and time consuming.
Distance maps provide a simplified representation of spatial constraints between nucleotides, capturing essential relationships without requiring a full 3D model.
- Score: 1.8855270809505869
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Structural prediction has long been considered critical in RNA research,
especially following the success of AlphaFold2 in protein studies, which has
drawn significant attention to the field. While recent advances in machine
learning and data accumulation have effectively addressed many biological
tasks, particularly in protein related research. RNA structure prediction
remains a significant challenge due to data limitations. Obtaining RNA
structural data is difficult because traditional methods such as nuclear
magnetic resonance spectroscopy, Xray crystallography, and electron microscopy
are expensive and time consuming. Although several RNA 3D structure prediction
methods have been proposed, their accuracy is still limited. Predicting RNA
structural information at another level, such as distance maps, remains highly
valuable. Distance maps provide a simplified representation of spatial
constraints between nucleotides, capturing essential relationships without
requiring a full 3D model. This intermediate level of structural information
can guide more accurate 3D modeling and is computationally less intensive,
making it a useful tool for improving structural predictions. In this work, we
demonstrate that using only primary sequence information, we can accurately
infer the distances between RNA bases by utilizing a large pretrained RNA
language model coupled with a well trained downstream transformer.
Related papers
- BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - 3D-based RNA function prediction tools in rnaglib [2.048226951354646]
Building datasets of RNA 3D structures and making appropriate modeling choices remains time-consuming and lacks standardization.
We describe the use of rnaglib, to train supervised and unsupervised machine learning-based function prediction models on datasets of RNA 3D structures.
arXiv Detail & Related papers (2024-02-14T17:22:03Z) - Knowledge from Large-Scale Protein Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA Contact Prediction Task [40.051834115537474]
We find that a protein-coevolution Transformer-based deep neural network can be transferred to the RNA contact prediction task.
Experiments confirm that RNA contact prediction through transfer learning is greatly improved.
Our findings indicate that the learned structural patterns of proteins can be transferred to RNAs, opening up potential new avenues for research.
arXiv Detail & Related papers (2023-02-13T06:00:56Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
We develop the first end-to-end deep learning approach, E2Efold-3D, to accurately perform the textitde novo RNA structure prediction.
Several novel components are proposed to overcome the data scarcity, such as a fully-differentiable end-to-end pipeline, secondary structure-assisted self-distillation, and parameter-efficient backbone formulation.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - Computational prediction of RNA tertiary structures using machine
learning methods [14.35527588241679]
Computational prediction approaches can help to understand RNA structures and their stabilizing factors.
Although their usage in protein-related fields has a long history, the use of machine learning methods in predicting RNA tertiary structures is new and rare.
arXiv Detail & Related papers (2020-09-03T04:01:43Z) - Review of Machine-Learning Methods for RNA Secondary Structure
Prediction [21.3539253580504]
We provide a comprehensive overview of RNA secondary structure prediction methods based on machine-learning technologies.
The current pending issues in the field of RNA secondary structure prediction and future trends are also discussed.
arXiv Detail & Related papers (2020-09-01T03:17:15Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
In this paper, we propose an end-to-end deep learning model, called E2Efold, for RNA secondary structure prediction.
The key idea of E2Efold is to directly predict the RNA base-pairing matrix, and use an unrolled algorithm for constrained programming as the template for deep architectures to enforce constraints.
With comprehensive experiments on benchmark datasets, we demonstrate the superior performance of E2Efold.
arXiv Detail & Related papers (2020-02-13T23:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.