Ground state bistability of cold atoms in a cavity
- URL: http://arxiv.org/abs/2207.01724v1
- Date: Mon, 4 Jul 2022 21:13:14 GMT
- Title: Ground state bistability of cold atoms in a cavity
- Authors: B. G\'abor, D. Nagy, A. Dombi, T. W. Clark, F. I. B. Williams, K. V.
Adwaith, A. Vukics, P. Domokos
- Abstract summary: We experimentally demonstrate an optical bistability between two hyperfine atomic ground states, using a single mode of an optical resonator in the collective strong coupling regime.
Whereas in the familiar case, the bistable region is created through atomic saturation, we report an effect between states of high quantum purity, which is essential for future information storage.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally demonstrate an optical bistability between two hyperfine
atomic ground states, using a single mode of an optical resonator in the
collective strong coupling regime. Whereas in the familiar case, the bistable
region is created through atomic saturation, we report an effect between states
of high quantum purity, which is essential for future information storage. The
nonlinearity of the transitions arise from cavity-assisted pumping between
ground states of cold, trapped atoms and the stability depends on the intensity
of two driving lasers. We interpret the phenomenon in terms of the recent
paradigm of first-order, driven-dissipative phase transitions, where the
transmitted and driving fields are understood as the order and control
parameters, respectively. The saturation-induced bistability is recovered for
infinite drive in one of the controls. The order of the transition is confirmed
experimentally by hysteresis in the order parameter when either of the two
control parameters is swept repeatedly across the bistability region and the
underlying phase diagram is predicted in line with semiclassical mean-field
theory.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model [0.7499722271664147]
We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model.
We find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation.
Our study enlarges the scope of critical phenomena that may occur in finite-component quantum systems.
arXiv Detail & Related papers (2023-11-19T15:13:57Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Spectral Engineering of Cavity-Protected Polaritons in an Atomic
Ensemble with Controlled Disorder [0.0]
We observe the transition from a disordered regime to a polaritonic one with only two resonances.
We realize a dynamically modulated Tavis-Cumming model to produce a comb of narrow polariton resonances protected from the disorder.
arXiv Detail & Related papers (2022-08-25T13:40:32Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Stabilization of product states and excited-state quantum phase
transitions in a coupled qubit-field system [0.0]
We study a system of a single qubit interacting with a soft-mode bosonic field.
An experimentally testable signature of some transitions is a dynamical stabilization of a fully factorized qubit-field state.
We analyze semiclassical origins of these effects and show their connection to various forms of excited-state quantum phase transitions.
arXiv Detail & Related papers (2021-08-18T15:46:42Z) - Control of spectroscopic features of multiphoton transitions in two
coupled qubits by driving fields [0.0]
We study the quantum levels population behavior of the two coupled flux qubits depending on the external driving field characteristics.
We describe the controllable features of their formation and thereby creating or destroying entanglement.
We numerically demonstrate, that the positions of multiphoton resonances are stable to dissipative processes.
arXiv Detail & Related papers (2021-03-26T06:18:38Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.