Rank-Based Filter Pruning for Real-Time UAV Tracking
- URL: http://arxiv.org/abs/2207.01768v1
- Date: Tue, 5 Jul 2022 02:13:53 GMT
- Title: Rank-Based Filter Pruning for Real-Time UAV Tracking
- Authors: Xucheng Wang, Dan Zeng, Qijun Zhao, Shuiwang Li
- Abstract summary: Unmanned aerial vehicle (UAV) tracking has wide potential applications in such as agriculture, navigation, and public security.
Discriminative correlation filters (DCF) trackers stand out in the UAV tracking community because of their high efficiency.
Model compression is a promising way to narrow the gap between DCF- and deep learning-based trackers.
- Score: 11.740436885164833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicle (UAV) tracking has wide potential applications in
such as agriculture, navigation, and public security. However, the limitations
of computing resources, battery capacity, and maximum load of UAV hinder the
deployment of deep learning-based tracking algorithms on UAV. Consequently,
discriminative correlation filters (DCF) trackers stand out in the UAV tracking
community because of their high efficiency. However, their precision is usually
much lower than trackers based on deep learning. Model compression is a
promising way to narrow the gap (i.e., effciency, precision) between DCF- and
deep learning- based trackers, which has not caught much attention in UAV
tracking. In this paper, we propose the P-SiamFC++ tracker, which is the first
to use rank-based filter pruning to compress the SiamFC++ model, achieving a
remarkable balance between efficiency and precision. Our method is general and
may encourage further studies on UAV tracking with model compression. Extensive
experiments on four UAV benchmarks, including UAV123@10fps, DTB70, UAVDT and
Vistrone2018, show that P-SiamFC++ tracker significantly outperforms
state-of-the-art UAV tracking methods.
Related papers
- Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses.
We propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses.
arXiv Detail & Related papers (2024-01-18T02:14:13Z) - Towards Discriminative Representations with Contrastive Instances for
Real-Time UAV Tracking [5.557099240958562]
Discriminative correlation filters (DCF)-based trackers can yield high efficiency on a single CPU but with inferior precision.
Lightweight Deep learning (DL)-based trackers can achieve a good balance between efficiency and precision but performance gains are limited by the compression rate.
This paper aims to enhance the discriminative power of feature representations from a new feature-learning perspective.
arXiv Detail & Related papers (2023-08-22T13:58:45Z) - Learning Disentangled Representation with Mutual Information
Maximization for Real-Time UAV Tracking [1.0541541376305243]
This paper exploits disentangled representation with mutual information (DR-MIM) to improve precision and efficiency for UAV tracking.
Our DR-MIM tracker significantly outperforms state-of-the-art UAV tracking methods.
arXiv Detail & Related papers (2023-08-20T13:16:15Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Learning Residue-Aware Correlation Filters and Refining Scale Estimates
with the GrabCut for Real-Time UAV Tracking [12.718396980204961]
Unmanned aerial vehicle (UAV)-based tracking is attracting increasing attention and developing rapidly in applications such as agriculture, aviation, navigation, transportation and public security.
Recently, discriminative correlation filters (DCF)-based trackers have stood out in UAV tracking community for their high efficiency and robustness on a single CPU.
In this paper, we explore using segmentation by the GrabCut to improve the wildly adopted discriminative scale estimation in DCF-based trackers.
arXiv Detail & Related papers (2021-04-07T13:35:01Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Correlation Filters for Unmanned Aerial Vehicle-Based Aerial Tracking: A
Review and Experimental Evaluation [17.8941834997338]
Discriminative correlation filter (DCF)-based trackers have stood out for their high computational efficiency and robustness on a single CPU.
In this work, 23 state-of-the-art DCF-based trackers are summarized according to their innovations for solving various issues.
Experiments show the performance, verify the feasibility, and demonstrate the current challenges of DCF-based trackers onboard UAV tracking.
arXiv Detail & Related papers (2020-10-13T09:35:40Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
We propose a cascaded regression tracker with two sequential stages.
In the first stage, we filter out abundant easily-identified negative candidates.
In the second stage, a discrete sampling based ridge regression is designed to double-check the remaining ambiguous hard samples.
arXiv Detail & Related papers (2020-06-18T07:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.