Improved Global Guarantees for the Nonconvex Burer--Monteiro Factorization via Rank Overparameterization
- URL: http://arxiv.org/abs/2207.01789v2
- Date: Mon, 8 Jul 2024 10:58:33 GMT
- Title: Improved Global Guarantees for the Nonconvex Burer--Monteiro Factorization via Rank Overparameterization
- Authors: Richard Y. Zhang,
- Abstract summary: We consider a twice-differentiable, $L$-smooth, $mu$-strongly convex objective $phimph over an $ntimes n$fracfrac14(L/mu-1)2rstar$.
Despite non-locality, local optimization is guaranteed to globally converge from any initial point to the global optimum.
- Score: 10.787390511207683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider minimizing a twice-differentiable, $L$-smooth, and $\mu$-strongly convex objective $\phi$ over an $n\times n$ positive semidefinite matrix $M\succeq0$, under the assumption that the minimizer $M^{\star}$ has low rank $r^{\star}\ll n$. Following the Burer--Monteiro approach, we instead minimize the nonconvex objective $f(X)=\phi(XX^{T})$ over a factor matrix $X$ of size $n\times r$. This substantially reduces the number of variables from $O(n^{2})$ to as few as $O(n)$ and also enforces positive semidefiniteness for free, but at the cost of giving up the convexity of the original problem. In this paper, we prove that if the search rank $r\ge r^{\star}$ is overparameterized by a \emph{constant factor} with respect to the true rank $r^{\star}$, namely as in $r>\frac{1}{4}(L/\mu-1)^{2}r^{\star}$, then despite nonconvexity, local optimization is guaranteed to globally converge from any initial point to the global optimum. This significantly improves upon a previous rank overparameterization threshold of $r\ge n$, which we show is sharp in the absence of smoothness and strong convexity, but would increase the number of variables back up to $O(n^{2})$. Conversely, without rank overparameterization, we prove that such a global guarantee is possible if and only if $\phi$ is almost perfectly conditioned, with a condition number of $L/\mu<3$. Therefore, we conclude that a small amount of overparameterization can lead to large improvements in theoretical guarantees for the nonconvex Burer--Monteiro factorization.
Related papers
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Convergence of Gradient Descent with Small Initialization for
Unregularized Matrix Completion [21.846732043706318]
We show that the vanilla gradient descent provably converges to the ground truth $rmXstar$ without requiring any explicit regularization.
Surprisingly, neither the convergence rate nor the final accuracy depends on the over- parameterized search rank $r'$, and they are only governed by the true rank $r$.
arXiv Detail & Related papers (2024-02-09T19:39:23Z) - On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [59.65871549878937]
This paper considers the RMSProp and its momentum extension and establishes the convergence rate of $frac1Tsum_k=1T.
Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$.
Our convergence rate can be considered to be analogous to the $frac1Tsum_k=1T.
arXiv Detail & Related papers (2024-02-01T07:21:32Z) - A note on $L^1$-Convergence of the Empiric Minimizer for unbounded
functions with fast growth [0.0]
For $V : mathbbRd to mathbbR$ coercive, we study the convergence rate for the $L1$-distance of the empiric minimizer.
We show that in general, for unbounded functions with fast growth, the convergence rate is bounded above by $a_n n-1/q$, where $q$ is the dimension of the latent random variable.
arXiv Detail & Related papers (2023-03-08T08:46:13Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $epsilon n$ arbitrary outliers.
We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(Sigma,Xi) nor the operator norm of $Xi$.
arXiv Detail & Related papers (2022-09-06T23:37:31Z) - Preconditioned Gradient Descent for Overparameterized Nonconvex
Burer--Monteiro Factorization with Global Optimality Certification [14.674494335647841]
We consider using gradient descent to minimize the non function $f(X)=phi(XXT)$ over an $ntimes r$ factor matrix $X$.
We propose an inexpensive preconditioner that restores the convergence rate of gradient descent back to linear.
arXiv Detail & Related papers (2022-06-07T14:26:49Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Convergence Rate of the (1+1)-Evolution Strategy with Success-Based
Step-Size Adaptation on Convex Quadratic Functions [20.666734673282498]
The (1+1)-evolution strategy (ES) with success-based step-size adaptation is analyzed on a general convex quadratic function.
The convergence rate of the (1+1)-ES is derived explicitly and rigorously on a general convex quadratic function.
arXiv Detail & Related papers (2021-03-02T09:03:44Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.