論文の概要: ICE-NODE: Integration of Clinical Embeddings with Neural Ordinary
Differential Equations
- arxiv url: http://arxiv.org/abs/2207.01873v1
- Date: Tue, 5 Jul 2022 08:13:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-06 15:27:57.122268
- Title: ICE-NODE: Integration of Clinical Embeddings with Neural Ordinary
Differential Equations
- Title(参考訳): ICE-NODE:ニューラル常微分方程式と臨床埋め込みの統合
- Authors: Asem Alaa, Erik Mayer, Mauricio Barahona
- Abstract要約: ICE-NODEは、臨床コードとニューラルなODEの埋め込みを統合して、EHRの患者軌道を学習し、予測するアーキテクチャである。
我々は、ICE-NODEが急性腎不全や肺心疾患などの特定の疾患の予測に優れており、さらなる予測に活用できる患者リスクトラジェクトリを時間とともに生成できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early diagnosis of disease can result in improved health outcomes, such as
higher survival rates and lower treatment costs. With the massive amount of
information in electronic health records (EHRs), there is great potential to
use machine learning (ML) methods to model disease progression aimed at early
prediction of disease onset and other outcomes. In this work, we employ recent
innovations in neural ODEs to harness the full temporal information of EHRs. We
propose ICE-NODE (Integration of Clinical Embeddings with Neural Ordinary
Differential Equations), an architecture that temporally integrates embeddings
of clinical codes and neural ODEs to learn and predict patient trajectories in
EHRs. We apply our method to the publicly available MIMIC-III and MIMIC-IV
datasets, reporting improved prediction results compared to state-of-the-art
methods, specifically for clinical codes that are not frequently observed in
EHRs. We also show that ICE-NODE is more competent at predicting certain
medical conditions, like acute renal failure and pulmonary heart disease, and
is also able to produce patient risk trajectories over time that can be
exploited for further predictions.
- Abstract(参考訳): 疾患の早期診断は、生存率の向上や治療コストの低下など、健康状態の改善につながる可能性がある。
電子健康記録 (EHRs) に大量の情報が蓄積されていることから, 早期の発症予測や他の結果の予測を目的とした疾患進行のモデル化に機械学習 (ML) 手法を用いる可能性が大きい。
本研究では,ERHの時間的情報をフル活用するために,ニューラルODEの最近のイノベーションを採用する。
本稿では,ERHにおける患者軌跡の学習と予測のために,臨床コードとニューラルネットワークの埋め込みを時間的に統合したICE-NODE(Integration of Clinical Embeddings with Neural Ordinary Differential Equations)を提案する。
本手法を一般に公開されているMIMIC-IIIおよびMIMIC-IVデータセットに適用し、最先端の方法と比較して予測結果の改善を報告した。
また、ICE-NODEは急性腎不全や肺心疾患などの特定の疾患の予測に優れており、さらなる予測に活用できる患者リスクトラジェクタを時間とともに生成可能であることも示している。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
我々は、診断予測のための説明可能なモデルを開発するために、神経象徴的手法、特に論理ニューラルネットワーク(LNN)を用いている。
私たちのモデル、特に$M_textmulti-pathway$と$M_textcomprehensive$は、従来のモデルよりも優れたパフォーマンスを示します。
これらの知見は、医療AI応用における精度と説明可能性のギャップを埋める神経象徴的アプローチの可能性を強調している。
論文 参考訳(メタデータ) (2024-10-01T22:47:24Z) - Time-aware Heterogeneous Graph Transformer with Adaptive Attention Merging for Health Event Prediction [6.578298085691462]
本稿では,疾患領域の知識を同化し,薬物と疾患の複雑な関係を解明するための新しい異種グラフ学習モデルを提案する。
2つの医療データセットで評価したところ、予測精度と解釈可能性の両方において顕著な改善が見られた。
論文 参考訳(メタデータ) (2024-04-23T08:01:30Z) - TA-RNN: an Attention-based Time-aware Recurrent Neural Network Architecture for Electronic Health Records [0.0]
リカレントニューラルネットワーク(RNN)のような深層学習手法を用いて、ERHを分析して疾患の進行をモデル化し、診断を予測する。
本研究では,TA-RNN(Time-Aware RNN)とTA-RNN-Autoencoder(TA-RNN-AE)という,RNNに基づく2つの解釈可能なDLアーキテクチャを提案する。
本研究では,不規則な時間間隔の影響を軽減するため,訪問時間間の時間埋め込みを取り入れることを提案する。
論文 参考訳(メタデータ) (2024-01-26T07:34:53Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Predicting multiple sclerosis disease severity with multimodal deep
neural networks [10.599189568556508]
患者のMS病重症度を予測するための多モード深層学習フレームワークを構築するために,構造化ERHデータ,ニューロイメージングデータ,臨床ノートを活用するパイロット取り組みについて述べる。
提案したパイプラインは、単一モーダルデータを用いたモデルと比較して、受信者動作特性曲線(AUROC)の下での面積の最大25%増加を示す。
論文 参考訳(メタデータ) (2023-04-08T16:23:18Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
本稿では,統合畳み込みニューラルネットワークとリカレントニューラルネットワークを用いたEMH患者旅行データモデリングのためのエンドツーエンドアプローチを提案する。
本モデルでは,各患者旅行における長期的・短期的時間的パターンを抽出し,インパルスデータ生成を伴わずに,高レベルのEHRデータの欠落を効果的に処理することができる。
論文 参考訳(メタデータ) (2022-11-11T07:36:18Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。