論文の概要: ASR-Generated Text for Language Model Pre-training Applied to Speech
Tasks
- arxiv url: http://arxiv.org/abs/2207.01893v1
- Date: Tue, 5 Jul 2022 08:47:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-07 01:11:40.203312
- Title: ASR-Generated Text for Language Model Pre-training Applied to Speech
Tasks
- Title(参考訳): 言語モデル事前学習のためのasr生成テキストの音声タスクへの応用
- Authors: Valentin Pelloin, Franck Dary, Nicolas Herve, Benoit Favre, Nathalie
Camelin, Antoine Laurent, Laurent Besacier
- Abstract要約: 我々は、フランス国立音響研究所(INA)のコレクションを活用し、多様なテレビ番組の35万時間にASRを適用した後、19GBのテキストを取得する。
新たなモデル(FlauBERT-Oral)がコミュニティと共有され、音声言語理解、テレビ番組の分類、音声構文解析の3つのダウンストリームタスクに対して評価される。
- 参考スコア(独自算出の注目度): 20.83731188652985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim at improving spoken language modeling (LM) using very large amount of
automatically transcribed speech. We leverage the INA (French National
Audiovisual Institute) collection and obtain 19GB of text after applying ASR on
350,000 hours of diverse TV shows. From this, spoken language models are
trained either by fine-tuning an existing LM (FlauBERT) or through training a
LM from scratch. New models (FlauBERT-Oral) are shared with the community and
evaluated for 3 downstream tasks: spoken language understanding, classification
of TV shows and speech syntactic parsing. Results show that FlauBERT-Oral can
be beneficial compared to its initial FlauBERT version demonstrating that,
despite its inherent noisy nature, ASR-generated text can be used to build
spoken language models.
- Abstract(参考訳): 我々は,大量の自動書き起こし音声を用いた音声言語モデリング(lm)の改善を目指している。
我々は、フランス国立音響研究所(INA)のコレクションを活用し、多様なテレビ番組の35万時間にASRを適用した後、19GBのテキストを取得する。
このことから、音声言語モデルは既存のLM(FlauBERT)を微調整するか、あるいはゼロからLMを訓練することによって訓練される。
新しいモデル(FlauBERT-Oral)はコミュニティと共有され、音声言語理解、テレビ番組の分類、音声構文解析の3つの下流タスクに対して評価される。
その結果、フラウバート・オラルは元々のフラウバート版に比べて有益であり、本質的にうるさい性質にもかかわらず、asrが生成したテキストは音声言語モデルの構築に使用できることが示された。
関連論文リスト
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
最近のエンドツーエンド言語モデル(SLM)は、大規模言語モデル(LLM)の機能に拡張されている。
音声とテキストのペアデータを生成するための,シンプルで効果的な自動処理手法を提案する。
本モデルでは,音声教育データを必要としない音声関連タスクの汎用性を示す。
論文 参考訳(メタデータ) (2024-09-30T07:01:21Z) - Speech Recognition Rescoring with Large Speech-Text Foundation Models [20.145389016219106]
大規模言語モデル(LLM)は、大量のテキストデータを活用することで、人間の言語を理解する能力を示した。
自動音声認識(ASR)システムは、しばしば利用可能な転写音声データによって制限される。
最近の多モーダルな言語モデルでは、強い音声言語理解が示されている。
論文 参考訳(メタデータ) (2024-09-25T06:17:23Z) - SLM: Bridge the thin gap between speech and text foundation models [45.319071954143325]
音声・言語モデル (SLM) は、事前訓練された基礎言語モデルと言語モデルを利用するマルチタスク、多言語、二重モーダルモデルである。
我々は、SLMは訓練に効率的であるが、異なるモダリティの基盤モデルで既に獲得されている強力な能力を継承することを示した。
論文 参考訳(メタデータ) (2023-09-30T02:27:45Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - The Interpreter Understands Your Meaning: End-to-end Spoken Language
Understanding Aided by Speech Translation [13.352795145385645]
音声翻訳(ST)は、エンドツーエンドの音声言語理解のために、音声モデルを事前訓練する良い方法である。
我々は,本モデルが単言語および多言語意図分類に基づくベースラインよりも高い性能を達成することを示す。
また、音声要約のための新しいベンチマークデータセットを作成し、低リソース/ゼロショットを英語からフランス語またはスペイン語に転送する。
論文 参考訳(メタデータ) (2023-05-16T17:53:03Z) - Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers [92.55131711064935]
テキストから音声合成(TTS)のための言語モデリング手法を提案する。
具体的には、市販のニューラルオーディオモデルから派生した離散符号を用いて、ニューラルネットワークモデル(Vall-E)を訓練する。
Vall-Eは、コンテキスト内学習機能を導入し、高品質なパーソナライズされた音声の合成に使用できる。
論文 参考訳(メタデータ) (2023-01-05T15:37:15Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
VATLM (Visual-Audio-Text Language Model) を用いたクロスモーダル表現学習フレームワークを提案する。
提案したVATLMは、モダリティに依存しない情報をモデル化するために、統一されたバックボーンネットワークを使用する。
これら3つのモダリティを1つの共有セマンティック空間に統合するために、VATLMは統一トークンのマスク付き予測タスクで最適化される。
論文 参考訳(メタデータ) (2022-11-21T09:10:10Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Text-Free Prosody-Aware Generative Spoken Language Modeling [46.19240899818964]
pGSLM(Prosody-aware Generative Speech Language Model)を提案する。
音声のマルチストリームトランスフォーマー言語モデル(MS-TLM)と、MS-TLM出力を波形に変換する適応型HiFi-GANモデルで構成されている。
実験結果から, pGSLMは韻律とコンテンツモデリングの両方を改善するために韻律を利用することができ, 自然な, 意味のある, 一貫性のある音声を生成することができることがわかった。
論文 参考訳(メタデータ) (2021-09-07T18:03:21Z) - How Phonotactics Affect Multilingual and Zero-shot ASR Performance [74.70048598292583]
Transformer encoder-decoderモデルは、トレーニング中に提示された言語のIPA転写において、多言語データをうまく活用することが示されている。
我々は,エンコーダデコーダをAMとLMを分離したハイブリッドASRシステムに置き換える。
交叉音韻律のモデル化による利得は限定的であり,強すぎるモデルがゼロショット転送を損なう可能性があることを示す。
論文 参考訳(メタデータ) (2020-10-22T23:07:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。