論文の概要: An Intrusion Detection System based on Deep Belief Networks
- arxiv url: http://arxiv.org/abs/2207.02117v1
- Date: Tue, 5 Jul 2022 15:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-06 17:29:55.402061
- Title: An Intrusion Detection System based on Deep Belief Networks
- Title(参考訳): 深層信念ネットワークに基づく侵入検知システム
- Authors: Othmane Belarbi, Aftab Khan, Pietro Carnelli and Theodoros
Spyridopoulos
- Abstract要約: 我々は,接続デバイスネットワーク内におけるサイバー攻撃検出におけるDBNの性能を開発し,評価する。
提案したDBNアプローチは,トレーニングデータセットに表現されていない攻撃の検出を著しく改善し,競争力と有望な結果を示す。
- 参考スコア(独自算出の注目度): 1.535077825808595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of connected devices has led to the proliferation of novel
cyber-security threats known as zero-day attacks. Traditional behaviour-based
IDS rely on DNN to detect these attacks. The quality of the dataset used to
train the DNN plays a critical role in the detection performance, with
underrepresented samples causing poor performances. In this paper, we develop
and evaluate the performance of DBN on detecting cyber-attacks within a network
of connected devices. The CICIDS2017 dataset was used to train and evaluate the
performance of our proposed DBN approach. Several class balancing techniques
were applied and evaluated. Lastly, we compare our approach against a
conventional MLP model and the existing state-of-the-art. Our proposed DBN
approach shows competitive and promising results, with significant performance
improvement on the detection of attacks underrepresented in the training
dataset.
- Abstract(参考訳): 接続デバイスが急速に成長し、ゼロデイ攻撃として知られる新たなサイバーセキュリティ脅威が急増した。
従来の行動に基づくIDSは、これらの攻撃を検出するためにDNNに依存している。
DNNのトレーニングに使用されるデータセットの品質は、検出性能において重要な役割を果たす。
本稿では,接続機器のネットワーク内におけるサイバー攻撃検出におけるdbnの性能を評価・評価する。
CICIDS2017データセットを使用して、提案したDBNアプローチのパフォーマンスをトレーニングし、評価した。
いくつかのクラスバランス技術を適用し評価した。
最後に,従来のMLPモデルと既存の最先端技術との比較を行った。
提案したDBNアプローチは,トレーニングデータセットに表現されていない攻撃の検出において,競争力と有望な結果を示す。
関連論文リスト
- Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
GAN(Generative Adversarial Networks)の統合によるNIDSの性能向上のための新しいアプローチを提案する。
GANは、現実世界のネットワークの振る舞いを忠実に模倣する合成ネットワークトラフィックデータを生成する。
NIDSへのGANの統合は,訓練データに制限のある攻撃に対する侵入検知性能の向上につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-11T04:01:15Z) - usfAD Based Effective Unknown Attack Detection Focused IDS Framework [3.560574387648533]
Internet of Things(IoT)とIndustrial Internet of Things(IIoT)は、サイバー脅威の増加につながっている。
10年以上にわたり、研究者は侵入検知システム(IDS)を開発するための教師付き機械学習技術を模索してきた。
既知のデータセット上でトレーニングされ、テストされたIDSは、ゼロデイまたは未知の攻撃を検出するのに失敗する。
我々は,攻撃の訓練サンプルを必要としない,半教師付き学習に基づくIDSのための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-03-17T11:49:57Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
本稿では,Deep Residual Neural Networks(ResNets)の機能を活用したDDoS攻撃検出の強化手法を提案する。
我々は、良性および悪意のあるデータポイントの表現のバランスをとり、モデルが攻撃を示す複雑なパターンをよりよく識別できるようにする。
実世界のデータセットを用いた実験結果から,従来の手法よりもはるかに優れた99.98%の精度が得られた。
論文 参考訳(メタデータ) (2024-01-06T03:03:52Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
対向収束時間スコア(ACTS)は、対向ロバストネス指標として収束時間を測定する。
我々は,大規模画像Netデータセットに対する異なる敵攻撃に対して,提案したACTSメトリックの有効性と一般化を検証する。
論文 参考訳(メタデータ) (2023-10-10T09:39:38Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Practical No-box Adversarial Attacks with Training-free Hybrid Image Transformation [94.30136898739448]
ノンボックス脅威モデルの下では, テキストbftraining-free adversarial perturbationの存在を示す。
低レベルの特徴を持つ高周波成分 (HFC) ドメインは, 主に周波数成分の操作によって画像を攻撃する。
我々の手法は、主流の転送ベースのブラックボックス攻撃と競合する。
論文 参考訳(メタデータ) (2022-03-09T09:51:00Z) - Towards Adversarial-Resilient Deep Neural Networks for False Data
Injection Attack Detection in Power Grids [7.351477761427584]
偽データインジェクション攻撃(FDIA)は、電力システムの状態推定に重大なセキュリティ上の脅威をもたらす。
最近の研究では、機械学習(ML)技術、特にディープニューラルネットワーク(DNN)が提案されている。
論文 参考訳(メタデータ) (2021-02-17T22:26:34Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。