論文の概要: Segmenting Moving Objects via an Object-Centric Layered Representation
- arxiv url: http://arxiv.org/abs/2207.02206v1
- Date: Tue, 5 Jul 2022 17:59:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-06 15:30:11.378176
- Title: Segmenting Moving Objects via an Object-Centric Layered Representation
- Title(参考訳): オブジェクト中心層表現による移動物体のセグメンテーション
- Authors: Junyu Xie, Weidi Xie, Andrew Zisserman
- Abstract要約: 深層表現を用いたオブジェクト中心セグメンテーションモデルを提案する。
複数のオブジェクトで合成トレーニングデータを生成するスケーラブルなパイプラインを導入する。
標準的なビデオセグメンテーションベンチマークでモデルを評価する。
- 参考スコア(独自算出の注目度): 100.26138772664811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this paper is a model that is able to discover, track and
segment multiple moving objects in a video. We make four contributions: First,
we introduce an object-centric segmentation model with a depth-ordered layer
representation. This is implemented using a variant of the transformer
architecture that ingests optical flow, where each query vector specifies an
object and its layer for the entire video. The model can effectively discover
multiple moving objects and handle mutual occlusions; Second, we introduce a
scalable pipeline for generating synthetic training data with multiple objects,
significantly reducing the requirements for labour-intensive annotations, and
supporting Sim2Real generalisation; Third, we show that the model is able to
learn object permanence and temporal shape consistency, and is able to predict
amodal segmentation masks; Fourth, we evaluate the model on standard video
segmentation benchmarks, DAVIS, MoCA, SegTrack, FBMS-59, and achieve
state-of-the-art unsupervised segmentation performance, even outperforming
several supervised approaches. With test-time adaptation, we observe further
performance boosts.
- Abstract(参考訳): 本研究の目的は,映像中の複数の移動物体を発見し,追跡し,セグメンテーションすることができるモデルである。
まず、深さ順のレイヤ表現を持つオブジェクト中心のセグメンテーションモデルを紹介します。
これは、各クエリベクトルがビデオ全体に対してオブジェクトとその層を指定する光学フローを取り込み、トランスフォーマーアーキテクチャの変種を用いて実装される。
The model can effectively discover multiple moving objects and handle mutual occlusions; Second, we introduce a scalable pipeline for generating synthetic training data with multiple objects, significantly reducing the requirements for labour-intensive annotations, and supporting Sim2Real generalisation; Third, we show that the model is able to learn object permanence and temporal shape consistency, and is able to predict amodal segmentation masks; Fourth, we evaluate the model on standard video segmentation benchmarks, DAVIS, MoCA, SegTrack, FBMS-59, and achieve state-of-the-art unsupervised segmentation performance, even outperforming several supervised approaches.
テスト時間適応では、さらなるパフォーマンス向上が観察される。
関連論文リスト
- Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - Zero-Shot Open-Vocabulary Tracking with Large Pre-Trained Models [28.304047711166056]
大規模事前訓練モデルでは、野生の2次元静的画像中の物体の検出とセグメンテーションの進歩が期待できる。
このような大規模なトレーニング済みの静的イメージモデルを,オープン語彙のビデオトラッキングに再利用することは可能だろうか?
本稿では,オープンボキャブラリ検出器,セグメンタ,高密度光流推定器を,任意のカテゴリの物体を2Dビデオで追跡・セグメント化するモデルに再構成する。
論文 参考訳(メタデータ) (2023-10-10T20:25:30Z) - Efficient Unsupervised Video Object Segmentation Network Based on Motion
Guidance [1.5736899098702974]
本稿では,モーションガイダンスに基づく映像オブジェクト分割ネットワークを提案する。
モデルは、デュアルストリームネットワーク、モーションガイダンスモジュール、マルチスケールプログレッシブフュージョンモジュールを含む。
実験により,提案手法の優れた性能が証明された。
論文 参考訳(メタデータ) (2022-11-10T06:13:23Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormerは、すべてのビデオフレームで言語表現によって参照される所定のビデオでオブジェクトインスタンスをセグメントすることを目的としている。
本研究は, 循環学習率, 半教師付きアプローチ, テスト時間拡張推論など, さらなる向上策を提案する。
改良されたReferFormerはCVPR2022 Referring Youtube-VOS Challengeで2位にランクインした。
論文 参考訳(メタデータ) (2022-06-24T02:15:06Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
本稿では,教師なしビデオマルチオブジェクトセグメンテーションの課題について述べる。
より正確で効率的な時間区分のための新しいアプローチを紹介します。
DAVIS$_17$とYouTube-VISに対する提案手法を評価した結果,セグメント化精度と推論速度の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-10T14:39:44Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
本稿では,複数の動的物体の6-DoF動作,エゴモーション,深度を,監督なしで一眼レフカメラで明示的にモデル化する,エンドツーエンドのジョイントトレーニングフレームワークを提案する。
筆者らのフレームワークは,最先端の深度・動き推定法より優れていた。
論文 参考訳(メタデータ) (2021-02-04T14:26:42Z) - DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping [72.84991726271024]
我々は,コヒーレントなシーン全体を移動しているように見えるシーンの画像の一部を検出し,分割するための教師なしの手法について述べる。
提案手法はまず,セグメント間の相互情報を最小化することにより,運動場を分割する。
セグメントを使用してオブジェクトモデルを学習し、静的なイメージの検出に使用することができる。
論文 参考訳(メタデータ) (2020-08-16T22:05:13Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。