State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks
- URL: http://arxiv.org/abs/2207.02242v1
- Date: Tue, 5 Jul 2022 18:02:54 GMT
- Title: State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks
- Authors: Navid NaderiAlizadeh, Mark Eisen, Alejandro Ribeiro
- Abstract summary: We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
- Score: 124.89036526192268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider resource management problems in multi-user wireless networks,
which can be cast as optimizing a network-wide utility function, subject to
constraints on the long-term average performance of users across the network.
We propose a state-augmented algorithm for solving the aforementioned radio
resource management (RRM) problems, where, alongside the instantaneous network
state, the RRM policy takes as input the set of dual variables corresponding to
the constraints, which evolve depending on how much the constraints are
violated during execution. We theoretically show that the proposed
state-augmented algorithm leads to feasible and near-optimal RRM decisions.
Moreover, focusing on the problem of wireless power control using graph neural
network (GNN) parameterizations, we demonstrate the superiority of the proposed
RRM algorithm over baseline methods across a suite of numerical experiments.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Multi-Agent Reinforcement Learning for Network Routing in Integrated
Access Backhaul Networks [0.0]
We aim to maximize packet arrival ratio while minimizing their latency in IAB networks.
To solve this problem, we develop a multi-agent partially observed Markov decision process (POMD)
We show that A2C outperforms other reinforcement learning algorithms, leading to increased network efficiency and reduced selfish agent behavior.
arXiv Detail & Related papers (2023-05-12T13:03:26Z) - Decentralized Channel Management in WLANs with Graph Neural Networks [17.464353263281907]
Wireless local area networks (WLANs) manage multiple access points (APs) and assign radio frequency to APs for satisfying traffic demands.
This paper puts forth a learning-based solution that can be implemented in a decentralized manner.
arXiv Detail & Related papers (2022-10-30T21:14:45Z) - A State-Augmented Approach for Learning Optimal Resource Management
Decisions in Wireless Networks [58.720142291102135]
We consider a radio resource management (RRM) problem in a multi-user wireless network.
The goal is to optimize a network-wide utility function subject to constraints on the ergodic average performance of users.
We propose a state-augmented parameterization for the RRM policy, where alongside the instantaneous network states, the RRM policy takes as input the set of dual variables corresponding to the constraints.
arXiv Detail & Related papers (2022-10-28T21:24:13Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.