Multi-Agent Reinforcement Learning for Network Routing in Integrated
Access Backhaul Networks
- URL: http://arxiv.org/abs/2305.16170v1
- Date: Fri, 12 May 2023 13:03:26 GMT
- Title: Multi-Agent Reinforcement Learning for Network Routing in Integrated
Access Backhaul Networks
- Authors: Shahaf Yamin and Haim Permuter
- Abstract summary: We aim to maximize packet arrival ratio while minimizing their latency in IAB networks.
To solve this problem, we develop a multi-agent partially observed Markov decision process (POMD)
We show that A2C outperforms other reinforcement learning algorithms, leading to increased network efficiency and reduced selfish agent behavior.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the problem of wireless routing in integrated access backhaul
(IAB) networks consisting of fiber-connected and wireless base stations and
multiple users. The physical constraints of these networks prevent the use of a
central controller, and base stations have limited access to real-time network
conditions. We aim to maximize packet arrival ratio while minimizing their
latency, for this purpose, we formulate the problem as a multi-agent partially
observed Markov decision process (POMDP). To solve this problem, we develop a
Relational Advantage Actor Critic (Relational A2C) algorithm that uses
Multi-Agent Reinforcement Learning (MARL) and information about similar
destinations to derive a joint routing policy on a distributed basis. We
present three training paradigms for this algorithm and demonstrate its ability
to achieve near-centralized performance. Our results show that Relational A2C
outperforms other reinforcement learning algorithms, leading to increased
network efficiency and reduced selfish agent behavior. To the best of our
knowledge, this work is the first to optimize routing strategy for IAB
networks.
Related papers
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN [5.1435595246496595]
This paper introduces an innovative approach to the resource allocation problem.
It aims to coordinate multiple independent x-applications (xAPPs) for network slicing and resource allocation in the Open Radio Access Network (O-RAN)
arXiv Detail & Related papers (2024-01-16T22:23:27Z) - A Novel Reinforcement Learning Routing Algorithm for Congestion Control
in Complex Networks [0.0]
This article introduces a routing algorithm leveraging reinforcement learning to address two primary objectives: congestion control and optimizing path length based on the shortest path algorithm.
Notably, the proposed method proves effective not only in Barab'asi-Albert scale-free networks but also in other network models such as Watts-Strogatz (small-world) and Erd"os-R'enyi (random network)
arXiv Detail & Related papers (2023-12-30T18:21:13Z) - A State-Augmented Approach for Learning Optimal Resource Management
Decisions in Wireless Networks [58.720142291102135]
We consider a radio resource management (RRM) problem in a multi-user wireless network.
The goal is to optimize a network-wide utility function subject to constraints on the ergodic average performance of users.
We propose a state-augmented parameterization for the RRM policy, where alongside the instantaneous network states, the RRM policy takes as input the set of dual variables corresponding to the constraints.
arXiv Detail & Related papers (2022-10-28T21:24:13Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
This paper considers the problem of cost-aware downlink sum-rate via joint optimal radio access technologies (RATs) assignment and power allocation in next-generation wireless networks (HetNets)
We propose a hierarchical multi-agent deep reinforcement learning (DRL) framework, called DeepRAT, to solve it efficiently and learn system dynamics.
In particular, the DeepRAT framework decomposes the problem into two main stages; the RATs-EDs assignment stage, which implements a single-agent Deep Q Network algorithm, and the power allocation stage, which utilizes a multi-agent Deep Deterministic Policy Gradient
arXiv Detail & Related papers (2022-02-28T09:49:44Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
We develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL)
Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-07-28T06:20:34Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - On Topology Optimization and Routing in Integrated Access and Backhaul
Networks: A Genetic Algorithm-based Approach [70.85399600288737]
We study the problem of topology optimization and routing in IAB networks.
We develop efficient genetic algorithm-based schemes for both IAB node placement and non-IAB backhaul link distribution.
We discuss the main challenges for enabling mesh-based IAB networks.
arXiv Detail & Related papers (2021-02-14T21:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.