論文の概要: Text Enriched Sparse Hyperbolic Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2207.02368v1
- Date: Wed, 6 Jul 2022 00:23:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-08 03:04:11.064173
- Title: Text Enriched Sparse Hyperbolic Graph Convolutional Networks
- Title(参考訳): テキストエンリッチな疎双曲グラフ畳み込みネットワーク
- Authors: Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Chandan K. Reddy
- Abstract要約: グラフニューラルネットワーク(GNN)とその双曲型は、そのようなネットワークを低次元の潜在空間でエンコードするための有望なアプローチを提供する。
本稿では,グラフのメタパス構造を意味信号を用いて捉えるために,テキスト強化スパースハイパーボリックグラフ畳み込みネットワーク(TESH-GCN)を提案する。
我々のモデルは,リンク予測のタスクにおいて,最先端のアプローチよりも大きなマージンで優れている。
- 参考スコア(独自算出の注目度): 21.83127488157701
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Heterogeneous networks, which connect informative nodes containing text with
different edge types, are routinely used to store and process information in
various real-world applications. Graph Neural Networks (GNNs) and their
hyperbolic variants provide a promising approach to encode such networks in a
low-dimensional latent space through neighborhood aggregation and hierarchical
feature extraction, respectively. However, these approaches typically ignore
metapath structures and the available semantic information. Furthermore, these
approaches are sensitive to the noise present in the training data. To tackle
these limitations, in this paper, we propose Text Enriched Sparse Hyperbolic
Graph Convolution Network (TESH-GCN) to capture the graph's metapath structures
using semantic signals and further improve prediction in large heterogeneous
graphs. In TESH-GCN, we extract semantic node information, which successively
acts as a connection signal to extract relevant nodes' local neighborhood and
graph-level metapath features from the sparse adjacency tensor in a
reformulated hyperbolic graph convolution layer. These extracted features in
conjunction with semantic features from the language model (for robustness) are
used for the final downstream task. Experiments on various heterogeneous graph
datasets show that our model outperforms the current state-of-the-art
approaches by a large margin on the task of link prediction. We also report a
reduction in both the training time and model parameters compared to the
existing hyperbolic approaches through a reformulated hyperbolic graph
convolution. Furthermore, we illustrate the robustness of our model by
experimenting with different levels of simulated noise in both the graph
structure and text, and also, present a mechanism to explain TESH-GCN's
prediction by analyzing the extracted metapaths.
- Abstract(参考訳): エッジタイプが異なるテキストを含む情報ノードを接続する異種ネットワークは、様々な現実世界のアプリケーションに情報を保存するために日常的に使用される。
グラフニューラルネットワーク(GNN)とその双曲的変種は、それぞれ近傍の集約と階層的特徴抽出を通じて、低次元の潜在空間でそのようなネットワークを符号化する有望なアプローチを提供する。
しかし、これらのアプローチは一般的にメタパス構造や利用可能な意味情報を無視する。
さらに、これらの手法はトレーニングデータに存在するノイズに敏感である。
本稿では,これらの制約に対処するために,意味的信号を用いてグラフのメタパス構造を捕捉し,さらに大きな異種グラフの予測を改善するために,テキスト強化スパースハイパーボリックグラフ畳み込みネットワーク(TESH-GCN)を提案する。
TESH-GCNでは,関係ノードの局所的近傍およびグラフレベルのメタパス特徴を,高次グラフ畳み込み層におけるスパース隣接テンソルから抽出する接続信号として機能する意味ノード情報を抽出する。
これらの抽出された特徴と言語モデルからのセマンティックな特徴(堅牢性のために)が最終ダウンストリームタスクに使用される。
様々な不均一グラフデータセットにおける実験により,本モデルはリンク予測のタスクにおいて,現在の最先端のアプローチよりも大きなマージンを持つことが示された。
また,修正双曲グラフ畳み込みによる既存の双曲的アプローチと比較して,トレーニング時間とモデルパラメータの両方の削減を報告した。
さらに,本モデルのロバスト性について,グラフ構造とテキストの両方において異なるレベルのシミュレーションノイズを実験し,抽出されたメタパスを解析し,tesh-gcnの予測を説明するメカニズムを提案する。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Topology-guided Hypergraph Transformer Network: Unveiling Structural Insights for Improved Representation [1.1606619391009658]
位相誘導型ハイパーグラフトランスネットワーク(THTN)を提案する。
このモデルでは、まず、構造的本質を維持しながらグラフからハイパーグラフを定式化し、グラフ内の高次関係を学習する。
本稿では,意味的,構造的両面から重要なノードとハイパーエッジを発見する構造認識型自己認識機構を提案する。
論文 参考訳(メタデータ) (2023-10-14T20:08:54Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
現在のグラフニューラルネットワーク(GNN)アーキテクチャは、2つの重要なコンポーネントに依存している。
本稿では,学習可能なグラフテンプレートとの距離をグラフ表現のコアに配置する新しい視点を提案する。
この距離埋め込みは、Fused Gromov-Wasserstein (FGW) 距離という最適な輸送距離によって構築される。
論文 参考訳(メタデータ) (2022-05-31T12:24:01Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。