Nonadiabatic quantum control of quantum dot arrays with fixed exchange
using Cartan decomposition
- URL: http://arxiv.org/abs/2207.02381v2
- Date: Wed, 9 Nov 2022 17:48:39 GMT
- Title: Nonadiabatic quantum control of quantum dot arrays with fixed exchange
using Cartan decomposition
- Authors: David W. Kanaar, Utkan G\"ung\"ord\"u and J. P. Kestner
- Abstract summary: In semiconductor spin qubits, shuttling of spin is a practical way to generate quantum operations between distant qubits.
We extend our previous results for double- and triple-dot systems, and describe a method for implementing spin shuttling in long chains of quantum dots in a nonadiabatic manner.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In semiconductor spin qubits which typically interact through short-range
exchange coupling, shuttling of spin is a practical way to generate quantum
operations between distant qubits. Although the exchange is often tunable
through voltages applied to gate electrodes, its minimal value can be
significantly large, which hinders the applicability of existing shuttling
protocols to such devices, requiring a different approach. In this work, we
extend our previous results for double- and triple-dot systems, and describe a
method for implementing spin shuttling in long chains of quantum dots in a
nonadiabatic manner. We make use of Cartan decomposition to break down the
interacting problem into simpler problems in a systematic way, and use
dynamical invariants to design smooth nonadiabatic pulses that can be
implemented in devices with modest control bandwidth. Finally, we discuss the
extensibility of our results to directed shuttling of spin states on
two-dimensional lattices of quantum dots with fixed coupling.
Related papers
- Scalable multi-qubit intrinsic gates in quantum dot arrays [0.0]
The intrinsic quantum gates refer to the class of natural-forming transformations in the qubit rotating-frame under direct exchange coupling.
We develop a general formalism for identifying the multi-qubit intrinsic gates under arbitrary array connectivity.
The applications of the intrinsic gates in quantum computing and quantum error correction are explored.
arXiv Detail & Related papers (2024-03-11T16:49:56Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Two-Particle Scattering on Non-Translation Invariant Line Lattices [0.0]
Quantum walks have been used to develop quantum algorithms since their inception.
We show that a CPHASE gate can be achieved with high fidelity when the interaction acts only on a small portion of the line graph.
arXiv Detail & Related papers (2023-03-08T02:36:29Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Resonant single-shot CNOT in remote double quantum dot spin qubits [0.0]
We propose a framework for ac-driven quantum gates between two non-local single-spin qubits dispersively coupled to a common mode of a superconducting resonator.
We expect gate times near 150 ns and fidelities above 90% with existing technology.
arXiv Detail & Related papers (2022-07-27T15:42:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.