Scalable multi-qubit intrinsic gates in quantum dot arrays
- URL: http://arxiv.org/abs/2403.06894v2
- Date: Mon, 13 May 2024 05:39:21 GMT
- Title: Scalable multi-qubit intrinsic gates in quantum dot arrays
- Authors: Jiaan Qi, Zhi-Hai Liu, Hongqi Xu,
- Abstract summary: The intrinsic quantum gates refer to the class of natural-forming transformations in the qubit rotating-frame under direct exchange coupling.
We develop a general formalism for identifying the multi-qubit intrinsic gates under arbitrary array connectivity.
The applications of the intrinsic gates in quantum computing and quantum error correction are explored.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study multi-qubit quantum gates intrinsic to an array of semiconductor quantum dots and investigate how they can be implemented in a scalable way. The intrinsic quantum gates refer to the class of natural-forming transformations in the qubit rotating-frame under direct exchange coupling, and can be recognized as an instruction set of spin-qubit chips. Adopting perturbative treatment, we can model the intrinsic gates by first-order dynamics in the coupling strength and develop a general formalism for identifying the multi-qubit intrinsic gates under arbitrary array connectivity. The advantageous applications of the intrinsic gates in quantum computing and quantum error correction are explored. Factors influencing the fidelities of the multi-qubit intrinsic gates are also discussed. To overcome the problem of inhomogeneous coupling, we propose a theoretical scheme in which single-qubit pulses are applied to dynamically calibrate the connecting bonds. This scheme can be further combined with periodic dynamical decoupling for robust implementations of multi-qubit gates in large-scale quantum computers.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Trade-off between Noise and Banding in a Quantum Adder with Qudits [0.0]
Quantum addition based on the quantum Fourier transform can be an integral part of a quantum circuit.
We analytically prove an upper bound on the number of the controlled rotation gates required to accomplish the quantum addition up to an arbitrary defect.
We demonstrate that utilizing magnetic fields to prepare an initial state that evolves according to a one-dimensional spin chain can be a potential technique to implement quantum addition circuits in many-body systems.
arXiv Detail & Related papers (2023-10-17T18:22:23Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Nonadiabatic quantum control of quantum dot arrays with fixed exchange
using Cartan decomposition [0.0]
In semiconductor spin qubits, shuttling of spin is a practical way to generate quantum operations between distant qubits.
We extend our previous results for double- and triple-dot systems, and describe a method for implementing spin shuttling in long chains of quantum dots in a nonadiabatic manner.
arXiv Detail & Related papers (2022-07-06T01:04:39Z) - Demonstration of tunable three-body interactions between superconducting
qubits [38.98439939494304]
We present a superconducting circuit architecture in which a coupling module mediates 2-local and 3-local interactions.
The 3-local interaction is coherently tunable over several MHz via the coupler flux biases and can be turned off.
arXiv Detail & Related papers (2022-05-09T20:23:43Z) - Effective non-local parity-dependent couplings in qubit chains [0.0]
We harness the simultaneous coupling of qubits on a chain and engineer a set of non-local parity-dependent quantum operations.
The resulting effective long-range couplings directly implement a parametrizable Trotter-step for Jordan-Wigner fermions.
We present numerical simulations of the gate operation in a superconducting quantum circuit architecture.
arXiv Detail & Related papers (2022-03-14T17:33:40Z) - Direct implementation of a perceptron in superconducting circuit quantum
hardware [0.0]
We demonstrate a superconducting qubit implementation of an adiabatic controlled gate, which generalizes the action of a classical perceptron as the basic building block of a quantum neural network.
Its demonstrated direct implementation as perceptron in quantum hardware may therefore lead to more powerful quantum neural networks when combined with suitable additional standard gates.
arXiv Detail & Related papers (2021-11-24T17:57:16Z) - Universal quantum computation with symmetric qubit clusters coupled to
an environment [0.3670422696827526]
We propose a scalable scheme for universal quantum computation where cores play the role of quantum-computational transistors, quansistors.
We include quantum errors as a main source of decoherence, and show that symmetry makes logical operations particularly resilient to untimely anisotropic qubit rotations.
Many of our results can be generalized to higher-level omega-rotation-invariant systems, or adapted to clusters with other symmetries.
arXiv Detail & Related papers (2021-06-01T19:59:41Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Programming a quantum computer with quantum instructions [39.994876450026865]
We use a density matrixiation protocol to execute quantum instructions on quantum data.
A fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state.
The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation.
arXiv Detail & Related papers (2020-01-23T22:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.