論文の概要: A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation
- arxiv url: http://arxiv.org/abs/2207.02410v2
- Date: Mon, 6 May 2024 07:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 03:49:02.103194
- Title: A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation
- Title(参考訳): カリキュラムに基づく曖昧さを考慮した部分的マルチラベル画像分類のための深部モデル
- Authors: Feng Sun, Ming-Kun Xie, Sheng-Jun Huang,
- Abstract要約: 部分多重ラベル(PML)画像分類問題について検討する。
既存のPMLメソッドは通常、ノイズの多いラベルをフィルタリングするための曖昧な戦略を設計する。
本稿では,PMLの表現能力と識別能力を高めるための深層モデルを提案する。
- 参考スコア(独自算出の注目度): 42.0958430465578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the partial multi-label (PML) image classification problem, where each image is annotated with a candidate label set consists of multiple relevant labels and other noisy labels. Existing PML methods typically design a disambiguation strategy to filter out noisy labels by utilizing prior knowledge with extra assumptions, which unfortunately is unavailable in many real tasks. Furthermore, because the objective function for disambiguation is usually elaborately designed on the whole training set, it can be hardly optimized in a deep model with SGD on mini-batches. In this paper, for the first time we propose a deep model for PML to enhance the representation and discrimination ability. On one hand, we propose a novel curriculum based disambiguation strategy to progressively identify ground-truth labels by incorporating the varied difficulties of different classes. On the other hand, a consistency regularization is introduced for model retraining to balance fitting identified easy labels and exploiting potential relevant labels. Extensive experimental results on the commonly used benchmark datasets show the proposed method significantly outperforms the SOTA methods.
- Abstract(参考訳): 本稿では,各画像に複数の関連ラベルおよび他のノイズラベルからなる候補ラベルセットをアノテートする部分的マルチラベル(PML)画像分類問題について検討する。
既存のPML手法は、多くの実タスクでは利用できない余分な仮定で事前知識を利用することで、ノイズの多いラベルをフィルタリングする曖昧な戦略を設計するのが一般的である。
さらに、曖昧化の目的関数は、通常、トレーニングセット全体に対して精巧に設計されているため、ミニバッチ上でSGDを持つディープモデルでは、ほとんど最適化できない。
本稿では,PMLの表現能力と識別能力を向上する深層モデルを提案する。
一方,異なる階層の様々な難易度を取り入れて,新たなカリキュラムに基づく曖昧さを段階的に識別する手法を提案する。
一方、モデル再訓練において、同定された容易なラベルの適合と潜在的な関連ラベルの活用のバランスをとるために整合正則化を導入する。
一般に使用されているベンチマークデータセットの大規模な実験結果から,提案手法がSOTA法より有意に優れていることが示された。
関連論文リスト
- Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
仮想カテゴリー(VC)は、モデルの最適化に安全に貢献できるように、各混乱したサンプルに割り当てられる。
私たちの興味深い発見は、密集した視覚タスクにおけるVC学習の利用に注目しています。
論文 参考訳(メタデータ) (2023-12-02T16:23:52Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
部分ラベル学習(Partial Label Learning, PLL)は、弱い教師付き学習の一種で、各トレーニングインスタンスに候補ラベルのセットが割り当てられる。
これはUn Reliable partial Label Learning (UPLL) と呼ばれ、部分ラベルの本質的な信頼性の欠如とあいまいさにより、さらなる複雑さをもたらす。
本研究では,信頼できない部分ラベルに対するモデル強化を支援するために,信頼性に欠けるコントラスト学習を活用するUnreliability-Robust Representation Learning framework(URRL)を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:37:28Z) - Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
多くの実世界のタスクでは、関連するオブジェクトは、候補ラベルセットに関連付けられたマルチインスタンスバッグとして表現することができる。
既存のMIPLアプローチは、各インスタンスに拡張候補ラベルセットを割り当て、インスタンスレベルのラベルからバッグレベルのラベルを集約することで、インスタンス空間のパラダイムに従っている。
本稿では,DEMIPLという直感的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-26T13:25:17Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
grAph-disambIguatioN (PLAIN) を用いた新しいディープ部分多重ラベルモデルを提案する。
具体的には、ラベルの信頼性を回復するために、インスタンスレベルとラベルレベルの類似性を導入する。
各トレーニングエポックでは、ラベルがインスタンスとラベルグラフに伝播し、比較的正確な擬似ラベルを生成する。
論文 参考訳(メタデータ) (2023-05-10T04:02:08Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
部分正ラベル(MLR-PPL)を用いたマルチラベルモデルの訓練が注目されている。
これまでの研究では、未知のラベルを負とみなし、従来のMLRアルゴリズムを採用した。
我々は,MLR-PPLタスクを容易にするために,異なる画像間の意味的相関について検討する。
論文 参考訳(メタデータ) (2022-11-15T02:11:20Z) - Meta Objective Guided Disambiguation for Partial Label Learning [44.05801303440139]
メタ客観的ガイド型曖昧化(MoGD)を用いたラベル学習のための新しい枠組みを提案する。
MoGDは、小さな検証セットでメタ目標を解くことで、候補ラベルから基底トラスラベルを復元することを目的としている。
提案手法は,通常のSGDを用いた様々なディープネットワークを用いて容易に実装できる。
論文 参考訳(メタデータ) (2022-08-26T06:48:01Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Meta-Learning for Multi-Label Few-Shot Classification [38.222736913855115]
この研究は、モデルがクエリ内で複数のラベルを予測することを学習するマルチラベルメタラーニングの問題をターゲットにしている。
ニューラルネットワークモジュールを導入し,リレーショナル推論を利用してサンプルのラベル数を推定する。
総合的な実験により,提案手法とニューラルラベルカウントモジュール(NLC)を併用したラベルプロパゲーションアルゴリズムが選択方法として検討されることが示唆された。
論文 参考訳(メタデータ) (2021-10-26T08:47:48Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
MIML設定におけるアクティブラーニングのための新しいバッグクラスペア方式を提案する。
我々のアプローチは、効率的かつ正確な推論を伴う識別的グラフィカルモデルに基づいている。
論文 参考訳(メタデータ) (2021-07-22T17:01:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。