Ordinal Regression via Binary Preference vs Simple Regression:
Statistical and Experimental Perspectives
- URL: http://arxiv.org/abs/2207.02454v1
- Date: Wed, 6 Jul 2022 05:52:19 GMT
- Title: Ordinal Regression via Binary Preference vs Simple Regression:
Statistical and Experimental Perspectives
- Authors: Bin Su, Shaoguang Mao, Frank Soong, Zhiyong Wu
- Abstract summary: Ordinal regression with anchored reference samples (ORARS) has been proposed for predicting the subjective Mean Opinion Score (MOS) of input stimuli automatically.
A trained binary classifier is then used to predict which sample, test or anchor, is better statistically.
- Score: 11.969202112011963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ordinal regression with anchored reference samples (ORARS) has been proposed
for predicting the subjective Mean Opinion Score (MOS) of input stimuli
automatically. The ORARS addresses the MOS prediction problem by pairing a test
sample with each of the pre-scored anchored reference samples. A trained binary
classifier is then used to predict which sample, test or anchor, is better
statistically. Posteriors of the binary preference decision are then used to
predict the MOS of the test sample. In this paper, rigorous framework,
analysis, and experiments to demonstrate that ORARS are advantageous over
simple regressions are presented. The contributions of this work are: 1) Show
that traditional regression can be reformulated into multiple preference tests
to yield a better performance, which is confirmed with simulations
experimentally; 2) Generalize ORARS to other regression problems and verify its
effectiveness; 3) Provide some prerequisite conditions which can insure proper
application of ORARS.
Related papers
- Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
We propose a neural network-based distributional regression methodology called engression'
An engression model is generative in the sense that we can sample from the fitted conditional distribution and is also suitable for high-dimensional outcomes.
We show that engression can successfully perform extrapolation under some assumptions such as monotonicity, whereas traditional regression approaches such as least-squares or quantile regression fall short under the same assumptions.
arXiv Detail & Related papers (2023-07-03T08:19:00Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions.
We propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations.
We develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples.
arXiv Detail & Related papers (2023-05-25T13:14:58Z) - Logistic Regression Equivalence: A Framework for Comparing Logistic
Regression Models Across Populations [4.518012967046983]
We argue that equivalence testing for a prespecified tolerance level on population differences incentivizes accuracy in the inference.
For diagnosis data, we show examples for equivalent and non-equivalent models.
arXiv Detail & Related papers (2023-03-23T15:12:52Z) - On the Theories Behind Hard Negative Sampling for Recommendation [51.64626293229085]
We offer two insightful guidelines for effective usage of Hard Negative Sampling (HNS)
We prove that employing HNS on the Personalized Ranking (BPR) learner is equivalent to optimizing One-way Partial AUC (OPAUC)
These analyses establish the theoretical foundation of HNS in optimizing Top-K recommendation performance for the first time.
arXiv Detail & Related papers (2023-02-07T13:57:03Z) - Boost Test-Time Performance with Closed-Loop Inference [85.43516360332646]
We propose to predict hard-classified test samples in a looped manner to boost the model performance.
We first devise a filtering criterion to identify those hard-classified test samples that need additional inference loops.
For each hard sample, we construct an additional auxiliary learning task based on its original top-$K$ predictions to calibrate the model.
arXiv Detail & Related papers (2022-03-21T10:20:21Z) - AdaPT-GMM: Powerful and robust covariate-assisted multiple testing [0.7614628596146599]
We propose a new empirical Bayes method for co-assisted multiple testing with false discovery rate (FDR) control.
Our method refines the adaptive p-value thresholding (AdaPT) procedure by generalizing its masking scheme.
We show in extensive simulations and real data examples that our new method, which we call AdaPT-GMM, consistently delivers high power.
arXiv Detail & Related papers (2021-06-30T05:06:18Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - On Model Identification and Out-of-Sample Prediction of Principal
Component Regression: Applications to Synthetic Controls [20.96904429337912]
We analyze principal component regression (PCR) in a high-dimensional error-in-variables setting with fixed design.
We establish non-asymptotic out-of-sample prediction guarantees that improve upon the best known rates.
arXiv Detail & Related papers (2020-10-27T17:07:36Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately.
Our approach should be preferred if the goal is to select as many relevant predictors as possible.
Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level.
arXiv Detail & Related papers (2020-08-01T10:36:27Z) - Safe Testing [0.9634859579172255]
We develop the theory of hypothesis testing based on the e-value.
Tests based on e-values are safe, i.e. they preserve Type-I error guarantees.
arXiv Detail & Related papers (2019-06-18T20:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.