A conditional gradient homotopy method with applications to Semidefinite
Programming
- URL: http://arxiv.org/abs/2207.03101v2
- Date: Mon, 18 Dec 2023 11:24:54 GMT
- Title: A conditional gradient homotopy method with applications to Semidefinite
Programming
- Authors: Pavel Dvurechensky, Shimrit Shtern, Mathias Staudigl
- Abstract summary: homotopy-based conditional gradient method for solving convex optimization problems with a large number of simple conic constraints.
Our theoretical complexity is competitive when confronted to state-of-the-art SDP, with the decisive advantage of cheap projection-frees.
- Score: 1.6369790794838281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new homotopy-based conditional gradient method for solving
convex optimization problems with a large number of simple conic constraints.
Instances of this template naturally appear in semidefinite programming
problems arising as convex relaxations of combinatorial optimization problems.
Our method is a double-loop algorithm in which the conic constraint is treated
via a self-concordant barrier, and the inner loop employs a conditional
gradient algorithm to approximate the analytic central path, while the outer
loop updates the accuracy imposed on the temporal solution and the homotopy
parameter. Our theoretical iteration complexity is competitive when confronted
to state-of-the-art SDP solvers, with the decisive advantage of cheap
projection-free subroutines. Preliminary numerical experiments are provided for
illustrating the practical performance of the method.
Related papers
- Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Cyclic Block Coordinate Descent With Variance Reduction for Composite
Nonconvex Optimization [26.218670461973705]
We propose methods for solving problems coordinate non-asymptotic gradient norm guarantees.
Our results demonstrate the efficacy of the proposed cyclic-reduced scheme in training deep neural nets.
arXiv Detail & Related papers (2022-12-09T19:17:39Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Efficient Algorithms for High-Dimensional Convex Subspace Optimization
via Strict Complementarity [19.24470467199451]
We consider optimization problems in which the goal is find a $k$ subspace of $realsn$, $k$, which minimizes a convex smooth loss.
While this problem is highly in high-dimensional regimes, it is difficult to find a global optimal solution.
In this paper we present a natural.
determinate optimal dimension relaxation for which convergence to the.
global is straightforward.
arXiv Detail & Related papers (2022-02-08T17:36:43Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Conditional Gradient Methods for Convex Optimization with General Affine
and Nonlinear Constraints [8.643249539674612]
This paper presents new conditional gradient methods for solving convex optimization problems with general affine and nonlinear constraints.
We first present a new constraint extrapolated condition gradient (CoexCG) method that can achieve an $cal O (1/epsilon2)$ iteration complexity for both smooth and structured nonsmooth function constrained convex optimization.
We further develop novel variants of CoexCG, namely constraint extrapolated and dual regularized conditional gradient (CoexDurCG) methods, that can achieve similar iteration complexity to CoexCG but allow adaptive selection for algorithmic parameters.
arXiv Detail & Related papers (2020-06-30T23:49:38Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.