UIILD: A Unified Interpretable Intelligent Learning Diagnosis Framework
for Intelligent Tutoring Systems
- URL: http://arxiv.org/abs/2207.03122v3
- Date: Tue, 13 Jun 2023 06:52:02 GMT
- Title: UIILD: A Unified Interpretable Intelligent Learning Diagnosis Framework
for Intelligent Tutoring Systems
- Authors: Zhifeng Wang, Wenxing Yan, Chunyan Zeng, Shi Dong
- Abstract summary: The proposed unified interpretable intelligent learning diagnosis (UIILD) framework benefits from the powerful representation learning ability of deep learning and the interpretability of psychometrics.
Within the proposed framework, this paper presents a two-channel learning diagnosis mechanism LDM-ID as well as a three-channel learning diagnosis mechanism LDM-HMI.
- Score: 8.354034992258482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent learning diagnosis is a critical engine of intelligent tutoring
systems, which aims to estimate learners' current knowledge mastery status and
predict their future learning performance. The significant challenge with
traditional learning diagnosis methods is the inability to balance diagnostic
accuracy and interpretability. Although the existing psychometric-based
learning diagnosis methods provide some domain interpretation through cognitive
parameters, they have insufficient modeling capability with a shallow structure
for large-scale learning data. While the deep learning-based learning diagnosis
methods have improved the accuracy of learning performance prediction, their
inherent black-box properties lead to a lack of interpretability, making their
results untrustworthy for educational applications. To settle the above
problem, the proposed unified interpretable intelligent learning diagnosis
(UIILD) framework, which benefits from the powerful representation learning
ability of deep learning and the interpretability of psychometrics, achieves a
better performance of learning prediction and provides interpretability from
three aspects: cognitive parameters, learner-resource response network, and
weights of self-attention mechanism. Within the proposed framework, this paper
presents a two-channel learning diagnosis mechanism LDM-ID as well as a
three-channel learning diagnosis mechanism LDM-HMI. Experiments on two
real-world datasets and a simulation dataset show that our method has higher
accuracy in predicting learners' performances compared with the
state-of-the-art models, and can provide valuable educational interpretability
for applications such as precise learning resource recommendation and
personalized learning tutoring in intelligent tutoring systems.
Related papers
- Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
We use neuro-symbolic methods, specifically Logical Neural Networks (LNNs), to develop explainable models for diagnosis prediction.
Our models, particularly $M_textmulti-pathway$ and $M_textcomprehensive$, demonstrate superior performance over traditional models.
These findings highlight the potential of neuro-symbolic approaches in bridging the gap between accuracy and explainability in healthcare AI applications.
arXiv Detail & Related papers (2024-10-01T22:47:24Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - ReliCD: A Reliable Cognitive Diagnosis Framework with Confidence
Awareness [26.60714613122676]
Existing approaches often suffer from the issue of overconfidence in predicting students' mastery levels.
We propose a novel Reliable Cognitive Diagnosis(ReliCD) framework, which can quantify the confidence of the diagnosis feedback.
arXiv Detail & Related papers (2023-12-29T07:30:58Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - Deep Stable Representation Learning on Electronic Health Records [8.256340233221112]
Causal Healthcare Embedding (CHE) aims at eliminating the spurious statistical relationship by removing the dependencies between diagnoses and procedures.
Our proposed CHE method can be used as a flexible plug-and-play module that can enhance existing deep learning models on EHR.
arXiv Detail & Related papers (2022-09-03T04:10:45Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.