Efficient Pruning for Machine Learning Under Homomorphic Encryption
- URL: http://arxiv.org/abs/2207.03384v2
- Date: Mon, 04 Nov 2024 16:32:54 GMT
- Title: Efficient Pruning for Machine Learning Under Homomorphic Encryption
- Authors: Ehud Aharoni, Moran Baruch, Pradip Bose, Alper Buyuktosunoglu, Nir Drucker, Subhankar Pal, Tomer Pelleg, Kanthi Sarpatwar, Hayim Shaul, Omri Soceanu, Roman Vaculin,
- Abstract summary: Privacy-preserving machine learning (PPML) solutions are gaining widespread popularity.
Many rely on homomorphic encryption (HE) that offers confidentiality of the model and the data, but at the cost of large latency and memory requirements.
We introduce a framework called HE-PEx that comprises new pruning methods, on top of a packing technique called tile tensors, for reducing the latency and memory of PPML inference.
- Score: 2.2817485071636376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy-preserving machine learning (PPML) solutions are gaining widespread popularity. Among these, many rely on homomorphic encryption (HE) that offers confidentiality of the model and the data, but at the cost of large latency and memory requirements. Pruning neural network (NN) parameters improves latency and memory in plaintext ML but has little impact if directly applied to HE-based PPML. We introduce a framework called HE-PEx that comprises new pruning methods, on top of a packing technique called tile tensors, for reducing the latency and memory of PPML inference. HE-PEx uses permutations to prune additional ciphertexts, and expansion to recover inference loss. We demonstrate the effectiveness of our methods for pruning fully-connected and convolutional layers in NNs on PPML tasks, namely, image compression, denoising, and classification, with autoencoders, multilayer perceptrons (MLPs) and convolutional neural networks (CNNs). We implement and deploy our networks atop a framework called HElayers, which shows a 10-35% improvement in inference speed and a 17-35% decrease in memory requirement over the unpruned network, corresponding to 33-65% fewer ciphertexts, within a 2.5% degradation in inference accuracy over the unpruned network. Compared to the state-of-the-art pruning technique for PPML, our techniques generate networks with 70% fewer ciphertexts, on average, for the same degradation limit.
Related papers
- Reducing Storage of Pretrained Neural Networks by Rate-Constrained Quantization and Entropy Coding [56.066799081747845]
The ever-growing size of neural networks poses serious challenges on resource-constrained devices.<n>We propose a novel post-training compression framework that combines rate-aware quantization with entropy coding.<n>Our method allows for very fast decoding and is compatible with arbitrary quantization grids.
arXiv Detail & Related papers (2025-05-24T15:52:49Z) - MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
Homomorphic Encryption (HE) enables us to perform machine learning tasks over encrypted data.
We propose MOFHEI, a framework that optimize the model to make HE-based neural network inference, fast and efficient.
Our framework achieves up to 98% pruning ratio on LeNet, eliminating up to 93% of the required HE operations for performing PI.
arXiv Detail & Related papers (2024-12-10T22:44:54Z) - DNN Memory Footprint Reduction via Post-Training Intra-Layer Multi-Precision Quantization [0.0]
This paper introduces a technique that effectively reduces the memory footprint of Deep Neural Network (DNN) models on resource-constrained edge devices.
Our proposed technique, named Post-Training Intra-Layer Multi-Precision Quantization (PTILMPQ), employs a post-training quantization approach, eliminating the need for extensive training data.
arXiv Detail & Related papers (2024-04-03T15:06:09Z) - A Masked Pruning Approach for Dimensionality Reduction in
Communication-Efficient Federated Learning Systems [11.639503711252663]
Federated Learning (FL) represents a growing machine learning (ML) paradigm designed for training models across numerous nodes.
We develop a novel algorithm that overcomes limitations by combining a pruning-based method with the FL process.
We present an extensive experimental study demonstrating the superior performance of MPFL compared to existing methods.
arXiv Detail & Related papers (2023-12-06T20:29:23Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
We introduce the Epitome, a lightweight neural operator offering convolution-like functionality.
On the software side, we evaluate epitomes' latency and energy on PIM accelerators.
We introduce a PIM-aware layer-wise design method to enhance their hardware efficiency.
arXiv Detail & Related papers (2023-11-12T17:56:39Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Lightweight and Progressively-Scalable Networks for Semantic
Segmentation [100.63114424262234]
Multi-scale learning frameworks have been regarded as a capable class of models to boost semantic segmentation.
In this paper, we thoroughly analyze the design of convolutional blocks and the ways of interactions across multiple scales.
We devise Lightweight and Progressively-Scalable Networks (LPS-Net) that novelly expands the network complexity in a greedy manner.
arXiv Detail & Related papers (2022-07-27T16:00:28Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - MAFAT: Memory-Aware Fusing and Tiling of Neural Networks for Accelerated
Edge Inference [1.7894377200944507]
Machine learning networks can easily exceed available memory, increasing latency due to excessive OS swapping.
We propose a memory usage predictor coupled with a search algorithm to provide optimized fusing and tiling configurations.
Results show that our approach can run in less than half the memory, and with a speedup of up to 2.78 under severe memory constraints.
arXiv Detail & Related papers (2021-07-14T19:45:49Z) - Layer Pruning via Fusible Residual Convolutional Block for Deep Neural
Networks [15.64167076052513]
layer pruning has less inference time and runtime memory usage when the same FLOPs and number of parameters are pruned.
We propose a simple layer pruning method using residual convolutional block (ResConv)
Our pruning method achieves excellent performance of compression and acceleration over the state-thearts on different datasets.
arXiv Detail & Related papers (2020-11-29T12:51:16Z) - MicroNet: Towards Image Recognition with Extremely Low FLOPs [117.96848315180407]
MicroNet is an efficient convolutional neural network using extremely low computational cost.
A family of MicroNets achieve a significant performance gain over the state-of-the-art in the low FLOP regime.
For instance, MicroNet-M1 achieves 61.1% top-1 accuracy on ImageNet classification with 12 MFLOPs, outperforming MobileNetV3 by 11.3%.
arXiv Detail & Related papers (2020-11-24T18:59:39Z) - A Variational Information Bottleneck Based Method to Compress Sequential
Networks for Human Action Recognition [9.414818018857316]
We propose a method to effectively compress Recurrent Neural Networks (RNNs) used for Human Action Recognition (HAR)
We use a Variational Information Bottleneck (VIB) theory-based pruning approach to limit the information flow through the sequential cells of RNNs to a small subset.
We combine our pruning method with a specific group-lasso regularization technique that significantly improves compression.
It is shown that our method achieves over 70 times greater compression than the nearest competitor with comparable accuracy for the task of action recognition on UCF11.
arXiv Detail & Related papers (2020-10-03T12:41:51Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
We propose the autoencoder-based low-rank filter-sharing technique technique (ALF)
ALF shows a reduction of 70% in network parameters, 61% in operations and 41% in execution time, with minimal loss in accuracy.
arXiv Detail & Related papers (2020-07-27T09:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.