A Masked Pruning Approach for Dimensionality Reduction in
Communication-Efficient Federated Learning Systems
- URL: http://arxiv.org/abs/2312.03889v1
- Date: Wed, 6 Dec 2023 20:29:23 GMT
- Title: A Masked Pruning Approach for Dimensionality Reduction in
Communication-Efficient Federated Learning Systems
- Authors: Tamir L.S. Gez, Kobi Cohen
- Abstract summary: Federated Learning (FL) represents a growing machine learning (ML) paradigm designed for training models across numerous nodes.
We develop a novel algorithm that overcomes limitations by combining a pruning-based method with the FL process.
We present an extensive experimental study demonstrating the superior performance of MPFL compared to existing methods.
- Score: 11.639503711252663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) represents a growing machine learning (ML) paradigm
designed for training models across numerous nodes that retain local datasets,
all without directly exchanging the underlying private data with the parameter
server (PS). Its increasing popularity is attributed to notable advantages in
terms of training deep neural network (DNN) models under privacy aspects and
efficient utilization of communication resources. Unfortunately, DNNs suffer
from high computational and communication costs, as well as memory consumption
in intricate tasks. These factors restrict the applicability of FL algorithms
in communication-constrained systems with limited hardware resources.
In this paper, we develop a novel algorithm that overcomes these limitations
by synergistically combining a pruning-based method with the FL process,
resulting in low-dimensional representations of the model with minimal
communication cost, dubbed Masked Pruning over FL (MPFL). The algorithm
operates by initially distributing weights to the nodes through the PS.
Subsequently, each node locally trains its model and computes pruning masks.
These low-dimensional masks are then transmitted back to the PS, which
generates a consensus pruning mask, broadcasted back to the nodes. This
iterative process enhances the robustness and stability of the masked pruning
model. The generated mask is used to train the FL model, achieving significant
bandwidth savings. We present an extensive experimental study demonstrating the
superior performance of MPFL compared to existing methods. Additionally, we
have developed an open-source software package for the benefit of researchers
and developers in related fields.
Related papers
- Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: a communication-efficient FL framework is proposed to optimize sparse model structures with low computational overhead.
Experiments show that SpaFL improves accuracy while requiring much less communication and computing resources compared to sparse baselines.
arXiv Detail & Related papers (2024-06-01T13:10:35Z) - FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local
Parameter Sharing [14.938531944702193]
We propose Federated Learning with Local Heterogeneous Sharing (FedLPS)
FedLPS uses transfer learning to facilitate the deployment of multiple tasks on a single device by dividing the local model into a shareable encoder and task-specific encoders.
FedLPS significantly outperforms the state-of-the-art (SOTA) FL frameworks by up to 4.88% and reduces the computational resource consumption by 21.3%.
arXiv Detail & Related papers (2024-02-13T16:30:30Z) - Sparse Training for Federated Learning with Regularized Error Correction [9.852567834643292]
Federated Learning (FL) has attracted much interest due to the significant advantages it brings to training deep neural network (DNN) models.
FLARE presents a novel sparse training approach via accumulated pulling of the updated models with regularization on the embeddings in the FL process.
The performance of FLARE is validated through extensive experiments on diverse and complex models, achieving a remarkable sparsity level (10 times and more beyond the current state-of-the-art) along with significantly improved accuracy.
arXiv Detail & Related papers (2023-12-21T12:36:53Z) - Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications [6.042202852003457]
Federated learning (FL) is a technique for developing robust machine learning (ML) models.
To protect user privacy, FL requires users to send model updates rather than transmitting large quantities of raw and potentially confidential data.
This survey provides a comprehensive analysis and comparison of the most recent FL algorithms.
arXiv Detail & Related papers (2023-10-08T19:54:26Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
Federated Learning (FL) has emerged as a promising approach for privacy preservation.
This article investigates the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks.
We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss.
arXiv Detail & Related papers (2023-03-29T16:36:42Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.