Learning Active Subspaces for Effective and Scalable Uncertainty
Quantification in Deep Neural Networks
- URL: http://arxiv.org/abs/2309.03061v1
- Date: Wed, 6 Sep 2023 15:00:36 GMT
- Title: Learning Active Subspaces for Effective and Scalable Uncertainty
Quantification in Deep Neural Networks
- Authors: Sanket Jantre, Nathan M. Urban, Xiaoning Qian, Byung-Jun Yoon
- Abstract summary: We propose a novel scheme for constructing a low-dimensional subspace of the neural network parameters.
We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference.
Our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.
- Score: 13.388835540131508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian inference for neural networks, or Bayesian deep learning, has the
potential to provide well-calibrated predictions with quantified uncertainty
and robustness. However, the main hurdle for Bayesian deep learning is its
computational complexity due to the high dimensionality of the parameter space.
In this work, we propose a novel scheme that addresses this limitation by
constructing a low-dimensional subspace of the neural network
parameters-referred to as an active subspace-by identifying the parameter
directions that have the most significant influence on the output of the neural
network. We demonstrate that the significantly reduced active subspace enables
effective and scalable Bayesian inference via either Monte Carlo (MC) sampling
methods, otherwise computationally intractable, or variational inference.
Empirically, our approach provides reliable predictions with robust uncertainty
estimates for various regression tasks.
Related papers
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Bayesian deep learning framework for uncertainty quantification in high
dimensions [6.282068591820945]
We develop a novel deep learning method for uncertainty quantification in partial differential equations based on Bayesian neural network (BNN) and Hamiltonian Monte Carlo (HMC)
A BNN efficiently learns the posterior distribution of the parameters in deep neural networks by performing Bayesian inference on the network parameters.
The posterior distribution is efficiently sampled using HMC to quantify uncertainties in the system.
arXiv Detail & Related papers (2022-10-21T05:20:06Z) - Efficient Bayes Inference in Neural Networks through Adaptive Importance
Sampling [19.518237361775533]
In BNNs, a complete posterior distribution of the unknown weight and bias parameters of the network is produced during the training stage.
This feature is useful in countless machine learning applications.
It is particularly appealing in areas where decision-making has a crucial impact, such as medical healthcare or autonomous driving.
arXiv Detail & Related papers (2022-10-03T14:59:23Z) - Variational Bayes Deep Operator Network: A data-driven Bayesian solver
for parametric differential equations [0.0]
We propose Variational Bayes DeepONet (VB-DeepONet) for operator learning.
VB-DeepONet uses variational inference to take into account high dimensional posterior distributions.
arXiv Detail & Related papers (2022-06-12T04:20:11Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Efficient Variational Inference for Sparse Deep Learning with
Theoretical Guarantee [20.294908538266867]
Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks.
In this paper, we train sparse deep neural networks with a fully Bayesian treatment under spike-and-slab priors.
We develop a set of computationally efficient variational inferences via continuous relaxation of Bernoulli distribution.
arXiv Detail & Related papers (2020-11-15T03:27:54Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.