Rotated ansatz for approximate counterdiabatic driving
- URL: http://arxiv.org/abs/2207.03553v1
- Date: Thu, 7 Jul 2022 20:00:09 GMT
- Title: Rotated ansatz for approximate counterdiabatic driving
- Authors: Glen Bigan Mbeng, Wolfgang Lechner
- Abstract summary: We introduce a novel variational rotated ansatz (RA) to systematically generate experimentally accessible approximate CD protocols.
We numerically benchmark our approach on state preparation and adiabatic quantum computing algorithms, and find that using RA protocols significantly enhances their performances.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate counterdiabatic (CD) protocols are a powerful tool to enhance
quantum adiabatic processes that allow to reliably manipulate quantum systems
on short time scales. However, implementing CD protocols entails the
introduction of additional control fields in the Hamiltonian, often associated
with highly non-local multi-body interactions. Here, we introduce a novel
variational rotated ansatz (RA) to systematically generate experimentally
accessible approximate CD protocols. We numerically benchmark our approach on
state preparation and adiabatic quantum computing algorithms, and find that
using RA protocols significantly enhances their performances.
Related papers
- Efficient Paths for Local Counterdiabatic Driving [0.0]
Local counterdiabatic driving (CD) provides a feasible approach for realizing approximate reversible/adiabatic processes.
We describe a systematic method for altering the adiabatic path by adding extra local controls.
We show that these methods provides dramatic improvement in the preparation of non-trivial GHZ ground states.
arXiv Detail & Related papers (2024-01-22T19:00:02Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems.
We use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes.
arXiv Detail & Related papers (2022-08-01T12:48:48Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Efficient and robust estimation of many-qubit Hamiltonians [0.0]
Characterizing the interactions and dynamics of quantum mechanical systems is an essential task in development of quantum technologies.
We propose an efficient protocol for characterizing the underlying Hamiltonian dynamics and the noise of a multi-qubit device.
This protocol can be used to parallelize to learn the Hamiltonian, rendering it applicable for the characterization of both current and future quantum devices.
arXiv Detail & Related papers (2022-05-19T13:52:32Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Unconditional preparation of squeezed vacuum from Rabi interactions [0.0]
We propose a method for the generation of very good approximations to highly squeezed vacuum states with low excess anti-squeezing.
This interaction can be implemented with several different methods, which has previously been demonstrated in superconducting circuit and trapped-ion platforms.
arXiv Detail & Related papers (2020-10-23T14:01:10Z) - Reinforcement Learning for Many-Body Ground-State Preparation Inspired
by Counterdiabatic Driving [2.5614220901453333]
CD-QAOA is designed for quantum many-body systems and optimized using a reinforcement learning (RL) approach.
We show that using terms occurring in the adiabatic gauge potential as generators of additional control unitaries, it is possible to achieve fast high-fidelity many-body control away from the adiabatic regime.
This work paves the way to incorporate recent success from deep learning for the purpose of quantum many-body control.
arXiv Detail & Related papers (2020-10-07T21:13:22Z) - Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing [3.106630515217536]
counter-diabatic (CD) driving provides a promising means to speed up quantum many-body systems.
We show the applicability of CD driving to enhance the digitized adiabatic quantum computing paradigm in terms of fidelity and total simulation time.
We implement this proposal in the IBM quantum computer, proving its usefulness for the speed up of adiabatic quantum computing in noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2020-09-08T06:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.