Efficient and robust estimation of many-qubit Hamiltonians
- URL: http://arxiv.org/abs/2205.09567v2
- Date: Tue, 15 Nov 2022 15:35:17 GMT
- Title: Efficient and robust estimation of many-qubit Hamiltonians
- Authors: Daniel Stilck Fran\c{c}a, Liubov A. Markovich, V. V. Dobrovitski,
Albert H. Werner, Johannes Borregaard
- Abstract summary: Characterizing the interactions and dynamics of quantum mechanical systems is an essential task in development of quantum technologies.
We propose an efficient protocol for characterizing the underlying Hamiltonian dynamics and the noise of a multi-qubit device.
This protocol can be used to parallelize to learn the Hamiltonian, rendering it applicable for the characterization of both current and future quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Characterizing the interactions and dynamics of quantum mechanical systems is
an essential task in the development of quantum technologies. We propose an
efficient protocol based on the estimation of the time derivatives of few qubit
observables using polynomial interpolation for characterizing the underlying
Hamiltonian dynamics and Markovian noise of a multi-qubit device. For finite
range dynamics, our protocol exponentially relaxes the necessary time
resolution of the measurements and quadratically reduces the overall sample
complexity compared to previous approaches. Furthermore, we show that our
protocol can characterize the dynamics of systems with algebraically decaying
interactions. The implementation of the protocol requires only the preparation
of product states and single-qubit measurements. Furthermore, we develop a
shadow tomography method for quantum channels that is of independent interest.
This protocol can be used to parallelize to learn the Hamiltonian, rendering it
applicable for the characterization of both current and future quantum devices.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Qudit-native measurement protocol for dynamical correlations using Hadamard tests [0.0]
Dynamical correlations reveal important out-of-equilibrium properties of the underlying quantum many-body system.
We propose a modified protocol to overcome this limitation by decomposing qudit observables into unitary operations.
Our scheme can readily be implemented on various platforms and offers a wide range of applications.
arXiv Detail & Related papers (2024-07-03T18:01:29Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Quantum topological data analysis via the estimation of the density of
states [17.857341127079305]
We develop a quantum topological data analysis protocol based on the estimation of the density of states (DOS) of the Laplacian.
We test our protocol on noiseless and noisy quantum simulators and run examples on IBM quantum processors.
arXiv Detail & Related papers (2023-12-12T09:43:04Z) - Experimental speedup of quantum dynamics through squeezing [0.0]
We show that a broad class of interactions involving quantum harmonic oscillators can be made stronger (amplified) using a unitary squeezing protocol.
Importantly, the protocol does not require knowledge of the parameters of the Hamiltonian to be amplified, nor does it require a well-defined phase relationship between the squeezing interaction and the rest of the system dynamics.
arXiv Detail & Related papers (2023-04-11T22:49:49Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Measuring Arbitrary Physical Properties in Analog Quantum Simulation [0.5999777817331317]
A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments.
We propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics.
Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies.
arXiv Detail & Related papers (2022-12-05T19:00:01Z) - Resource-frugal Hamiltonian eigenstate preparation via repeated quantum
phase estimation measurements [0.0]
Preparation of Hamiltonian eigenstates is essential for many applications in quantum computing.
We adopt ideas from variants of this method to implement a resource-frugal iterative scheme.
We characterise an extension involving a modification of the target Hamiltonian to increase overall efficiency.
arXiv Detail & Related papers (2022-12-01T20:07:36Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.