DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection
- URL: http://arxiv.org/abs/2207.03579v4
- Date: Fri, 9 Jun 2023 11:37:55 GMT
- Title: DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection
- Authors: Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang,
Jiarong Xu, Lei Chen, Michalis Vazirgiannis
- Abstract summary: Graph Anomaly Detection (GAD) has recently become a hot research spot due to its practicability and theoretical value.
This paper present DGraph, a real-world dynamic graph in the finance domain.
It contains about 3M nodes, 4M dynamic edges, and 1M ground-truth nodes.
- Score: 23.88646583483315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Anomaly Detection (GAD) has recently become a hot research spot due to
its practicability and theoretical value. Since GAD emphasizes the application
and the rarity of anomalous samples, enriching the varieties of its datasets is
fundamental work. Thus, this paper present DGraph, a real-world dynamic graph
in the finance domain. DGraph overcomes many limitations of current GAD
datasets. It contains about 3M nodes, 4M dynamic edges, and 1M ground-truth
nodes. We provide a comprehensive observation of DGraph, revealing that
anomalous nodes and normal nodes generally have different structures, neighbor
distribution, and temporal dynamics. Moreover, it suggests that unlabeled nodes
are also essential for detecting fraudsters. Furthermore, we conduct extensive
experiments on DGraph. Observation and experiments demonstrate that DGraph is
propulsive to advance GAD research and enable in-depth exploration of anomalous
nodes.
Related papers
- Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels.
Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations.
We propose a framework for Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection (G3AD)
arXiv Detail & Related papers (2024-04-25T07:09:05Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Cross-Domain Graph Anomaly Detection via Anomaly-aware Contrastive
Alignment [22.769474986808113]
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph.
We introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT) for GAD.
ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods.
arXiv Detail & Related papers (2022-12-02T11:21:48Z) - Graph Anomaly Detection with Unsupervised GNNs [19.772490600670363]
We design GLAM, an end-to-end graph-level anomaly detection model based on graph neural networks (GNNs)
We also propose a new pooling strategy for graph-level embedding, called MMD-pooling, that is geared toward detecting distribution anomalies which has not been considered before.
arXiv Detail & Related papers (2022-10-18T01:59:58Z) - Graph Anomaly Detection with Graph Neural Networks: Current Status and
Challenges [9.076649460696402]
Graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks.
This survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
arXiv Detail & Related papers (2022-09-29T16:47:57Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural
Networks [74.26734952400925]
We propose a novel Minimum Graph Entropy (MinGE) algorithm for Node Embedding Dimension Selection (NEDS)
MinGE considers both feature entropy and structure entropy on graphs, which are carefully designed according to the characteristics of the rich information in them.
Experiments with popular Graph Neural Networks (GNNs) on benchmark datasets demonstrate the effectiveness and generalizability of our proposed MinGE.
arXiv Detail & Related papers (2021-05-07T11:40:29Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.