Small-time bilinear control of Schr\"odinger equations with application
to rotating linear molecules
- URL: http://arxiv.org/abs/2207.03818v2
- Date: Tue, 12 Jul 2022 18:02:41 GMT
- Title: Small-time bilinear control of Schr\"odinger equations with application
to rotating linear molecules
- Authors: Thomas Chambrion and Eugenio Pozzoli
- Abstract summary: We prove a small-time controllability property of nonlinear Schr"odinger equations on a d-dimensional torus $mathbbTd$.
We focus on the 2-dimensional sphere $S2$, which models the bilinear control of a rotating linear top.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In [14] Duca and Nersesyan proved a small-time controllability property of
nonlinear Schr\"odinger equations on a d-dimensional torus $\mathbb{T}^d$. In
this paper we study a similar property, in the linear setting, starting from a
closed Riemannian manifold. We then focus on the 2-dimensional sphere $S^2$,
which models the bilinear control of a rotating linear top: as a corollary, we
obtain the approximate controllability in arbitrarily small times among
particular eigenfunctions of the Laplacian of $S^2$.
Related papers
- Chiral spin liquid in a generalized Kitaev honeycomb model with $\mathbb{Z}_4$ 1-form symmetry [5.05619453134404]
We explore a large $N$ generalization of the Kitaev model on the honeycomb lattice with a simple nearest-neighbor interacting Hamiltonian.
In particular, we focus on the $mathbbZ_4$ case with isotropic couplings, which is characterized by an exact $mathbbZ_4$ one-form symmetry.
A unified perspective for all $mathbbZ_N$ type Kitaev models is also discussed.
arXiv Detail & Related papers (2024-08-04T14:53:23Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Small-time controllability for the nonlinear Schr\"odinger equation on
$\mathbb{R}^N$ via bilinear electromagnetic fields [55.2480439325792]
We address the small-time controllability problem for a nonlinear Schr"odinger equation (NLS) on $mathbbRN$ in the presence of magnetic and electric external fields.
In detail, we study when it is possible to control the dynamics of (NLS) as fast as desired via sufficiently large control signals.
arXiv Detail & Related papers (2023-07-28T21:30:44Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - Entanglement of inhomogeneous free fermions on hyperplane lattices [0.0]
We introduce an ingeneous model of free fermions on a $(D-1)$-dimensional lattice with $D(D-1)/2$ continuous parameters.
We compute the entanglement entropy numerically for $D=2,3,4$, for a wide range of parameters.
arXiv Detail & Related papers (2022-06-13T22:40:39Z) - The Eigenvalue Problem of Nonlinear Schr\"odinger Equation at Dirac
Points of Honeycomb Lattice [4.549831511476248]
We give a rigorous deduction of the eigenvalue problem of the nonlinear Schr"odinger equation (NLS) at Dirac Points for potential of honeycomb lattice symmetry.
We observe the bifurcation of the eigenfunctions into eight distinct modes from the two-dimensional degenerated eigenspace of the regressive linear Schr"odinger equation.
arXiv Detail & Related papers (2022-02-12T16:46:52Z) - Conditions for realizing one-point interactions from a multi-layer
structure model [77.34726150561087]
A heterostructure composed of $N$ parallel homogeneous layers is studied in the limit as their widths shrink to zero.
The problem is investigated in one dimension and the piecewise constant potential in the Schr"odinger equation is given.
arXiv Detail & Related papers (2021-12-15T22:30:39Z) - Many Body Quantum Chaos and Dual Unitarity Round-a-Face [0.0]
We propose a new type of locally interacting quantum circuits which are generated by unitary interactions round-a-face (IRF)
We show how arbitrary dynamical correlation functions of local observables can be evaluated in terms of finite dimensional completely positive trace preserving unital maps.
We provide additional data on dimensionality of the chiral extension of DUBG circuits with distinct local Hilbert spaces of dimensions $dneq d'$ residing at even/odd lattice sites.
arXiv Detail & Related papers (2021-05-17T17:16:33Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.