Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids
- URL: http://arxiv.org/abs/2501.09567v2
- Date: Wed, 04 Jun 2025 06:22:21 GMT
- Title: Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids
- Authors: Tong Liu, Ying-Hai Wu, Hong-Hao Tu, Tao Xiang,
- Abstract summary: We employ the $mathrmSU(n)_k$ Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions.<n>The spins on all lattice sites are chosen to transform under the $mathrmSU(n)$ irreducible representation with a single row and $k$ boxes in the Young tableau.
- Score: 48.225436651971805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We employ the $\mathrm{SU}(n)_k$ Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions. The spins on all lattice sites are chosen to transform under the $\mathrm{SU}(n)$ irreducible representation with a single row and $k$ boxes in the Young tableau. It is demonstrated that the wave functions can be reinterpreted as parton states, which enables efficient conversion to matrix product states such that many physical properties can be evaluated directly. In one dimension, these wave functions describe critical spin chains whose universality classes are in one-to-one correspondence with the WZW models used in the construction. In two dimensions, our constructions yield model wave functions for chiral spin liquids, and we show how to find all topological sectors of them in a systematic way. Using the null vectors of Kac-Moody algebras, parent Hamiltonians of the $\mathrm{SU}(3)_k$ series are derived. The $\mathrm{SU}(3)_k$ chiral spin liquids are lattice analogs of non-Abelian spin-singlet fractional quantum Hall states, and the $k=2$ member hosts Fibonacci anyons.
Related papers
- Towards the phase diagram of fermions coupled with $SO(3)$ quantum links in $(2+1)$-D [0.0]
Quantum link models (QLMs) are generalizations of Wilson's lattice gauge theory formulated with finite-dimensional link Hilbert spaces.<n>We extend the model to $(2+1)d$ dimensions for the first time, and report on our initial results.
arXiv Detail & Related papers (2024-12-12T19:13:05Z) - Gapped and gapless quantum spin liquids on the ruby lattice [0.0]
We present a total of 50 U$bbZ(1) and 182 distinct states of ruby spin on mean-consistent structures.
We also obtain a total of 64 anti-respecting space-group theories of spin on mean-consistent structures.
arXiv Detail & Related papers (2024-09-24T18:00:00Z) - Representation theory of Gaussian unitary transformations for bosonic and fermionic systems [0.0]
We analyze the behavior of the sign ambiguity that one needs to deal with when moving between the groups of the symplectic and special annihilation group.
We show how we can efficiently describe group multiplications in the double cover without the need of going to a faithful representation on an exponentially large or even infinite-dimensional space.
arXiv Detail & Related papers (2024-09-18T01:22:38Z) - Chiral spin liquid in a generalized Kitaev honeycomb model with $\mathbb{Z}_4$ 1-form symmetry [5.05619453134404]
We explore a large $N$ generalization of the Kitaev model on the honeycomb lattice with a simple nearest-neighbor interacting Hamiltonian.
In particular, we focus on the $mathbbZ_4$ case with isotropic couplings, which is characterized by an exact $mathbbZ_4$ one-form symmetry.
A unified perspective for all $mathbbZ_N$ type Kitaev models is also discussed.
arXiv Detail & Related papers (2024-08-04T14:53:23Z) - Exact deconfined gauge structures in the higher-spin Yao-Lee model: a quantum spin-orbital liquid with spin fractionalization and non-Abelian anyons [0.6144680854063939]
The Kitaev honeycomb model has an exact $mathbbZ$ gauge structure, which exclusively identifies quantum spin liquid (QSL) in the half-integer spin Kitaev model.<n>Our exact manifestation of spin fractionalization in an integer-spin model is rather rare in previous studies, and is absent in the Kitaev honeycomb model.
arXiv Detail & Related papers (2024-04-10T18:00:03Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Phases of 2d massless QCD with qubit regularization [3.3963028001679065]
continuum theory is described by N free fermions in the ultraviolet (UV) and a coset Wess-Zumino-Witten (WZW) model in the infrared (IR)
arXiv Detail & Related papers (2023-12-29T18:41:39Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Fractional disclination charge and discrete shift in the Hofstadter
butterfly [15.3862808585761]
We numerically compute the discrete shift $mathscrS$ for the square lattice Hofstadter model of free fermions.
We show that bands with the same Chern number may have different values of $mathscrS$, although odd and even Chern number bands always have half-integer and integer values of $mathscrS$ respectively.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Angular Momentum Eigenstates of the Isotropic 3-D Harmonic Oscillator:
Phase-Space Distributions and Coalescence Probabilities [0.0]
We compute the probabilities for coalescence of two distinguishable, non-relativistic particles into a bound state.
We use a phase-space formulation and hence need the Wigner distribution functions of angular momentum eigenstates.
arXiv Detail & Related papers (2021-12-22T23:16:44Z) - Wave functions for high-symmetry, thin microstrip antennas and
two-dimensional quantum boxes [48.7576911714538]
For a spinless quantum particle in a one-dimensional box or an electromagnetic wave in a one-dimensional cavity, the respective Dirichlet and Neumann boundary conditions both lead to non-degenerate wave functions.
In two spatial dimensions, the symmetry of the box or microstrip antenna is an important feature that has often been overlooked in the literature.
arXiv Detail & Related papers (2021-08-18T00:57:42Z) - Morphology of three-body quantum states from machine learning [18.56475227525833]
We show that a triangular quantum billiard can be integrable or non-integrable.
We use machine learning tools to analyze properties of probability distributions of individual quantum states.
We find that convolutional neural networks can correctly classify integrable and non-integrable states.
arXiv Detail & Related papers (2021-02-09T17:23:08Z) - Constructing tensor network wavefunction for a generic two-dimensional
quantum phase transition via thermofield double states [2.416375474510521]
Two-dimensional quantum Rokhsar-Kivelson (RK) type models can be mapped into the partition functions of two-dimensional statistical models.
We introduce the universality of the thermofield double (TFD) state, which is a purification of the equilibrium density operator.
By expressing the TFD state in terms of the projected entangled pair state, its $N$-order of R'enyi entropy results in a three-dimensional statistical model in Euclidian spacetime.
arXiv Detail & Related papers (2020-12-28T09:05:55Z) - Quantum trimer models and topological SU(3) spin liquids on the kagome
lattice [0.0]
We study quantum trimer models and resonating SU(3)-singlet models on the kagome lattice.
We show that the quantum order ultimately displayed by the model depends on the relative weight assigned to different types of trimers.
arXiv Detail & Related papers (2020-06-15T18:00:25Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z) - SU$(3)_1$ Chiral Spin Liquid on the Square Lattice: a View from
Symmetric PEPS [55.41644538483948]
Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of Projectedangled Pair States (PEPS)
Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder.
Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence.
arXiv Detail & Related papers (2019-12-31T16:30:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.