Personalizing Federated Medical Image Segmentation via Local Calibration
- URL: http://arxiv.org/abs/2207.04655v1
- Date: Mon, 11 Jul 2022 06:30:31 GMT
- Title: Personalizing Federated Medical Image Segmentation via Local Calibration
- Authors: Jiacheng Wang, Yueming Jin, Liansheng Wang
- Abstract summary: Using a single model to adapt to various data distributions from different sites is extremely challenging.
We propose a personalized federated framework with textbfLocal textbfCalibration (LC-Fed) to leverage the inter-site in-consistencies.
Our method consistently shows superior performance to the state-of-the-art personalized FL methods.
- Score: 9.171482226385551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation under federated learning (FL) is a promising
direction by allowing multiple clinical sites to collaboratively learn a global
model without centralizing datasets. However, using a single model to adapt to
various data distributions from different sites is extremely challenging.
Personalized FL tackles this issue by only utilizing partial model parameters
shared from global server, while keeping the rest to adapt to its own data
distribution in the local training of each site. However, most existing methods
concentrate on the partial parameter splitting, while do not consider the
\textit{inter-site in-consistencies} during the local training, which in fact
can facilitate the knowledge communication over sites to benefit the model
learning for improving the local accuracy. In this paper, we propose a
personalized federated framework with \textbf{L}ocal \textbf{C}alibration
(LC-Fed), to leverage the inter-site in-consistencies in both \textit{feature-
and prediction- levels} to boost the segmentation. Concretely, as each local
site has its alternative attention on the various features, we first design the
contrastive site embedding coupled with channel selection operation to
calibrate the encoded features. Moreover, we propose to exploit the knowledge
of prediction-level in-consistency to guide the personalized modeling on the
ambiguous regions, e.g., anatomical boundaries. It is achieved by computing a
disagreement-aware map to calibrate the prediction. Effectiveness of our method
has been verified on three medical image segmentation tasks with different
modalities, where our method consistently shows superior performance to the
state-of-the-art personalized FL methods. Code is available at
https://github.com/jcwang123/FedLC.
Related papers
- Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
We propose a methodology combining Federated Learning (FL) with Cross-view Image Geo-localization (CVGL) techniques.
Our method implements a coarse-to-fine approach, where clients share only the coarse feature extractors while keeping fine-grained features specific to local environments.
Results demonstrate that our federated CVGL method achieves performance close to centralized training while maintaining data privacy.
arXiv Detail & Related papers (2024-11-07T13:25:52Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts [11.562953837452126]
We make the first attempt to assess the informativeness of local data derived from diverse domains.
We propose a novel methodology termed Federated Evidential Active Learning (FEAL) to calibrate the data evaluation under domain shift.
arXiv Detail & Related papers (2023-12-05T08:32:27Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Personalized Federated Learning via Gradient Modulation for
Heterogeneous Text Summarization [21.825321314169642]
We propose a federated learning text summarization scheme, which allows users to share the global model in a cooperative learning manner without sharing raw data.
FedSUMM can achieve faster model convergence on PFL algorithm for task-specific text summarization.
arXiv Detail & Related papers (2023-04-23T03:18:46Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
Federated learning (FL) enables multiple sites to collaboratively train powerful deep models without compromising data privacy and security.
Weakly supervised segmentation, which uses sparsely-grained supervision, is increasingly being paid attention to due to its great potential of reducing annotation costs.
We propose a novel personalized FL framework for medical image segmentation, named FedICRA, which uniformly leverages heterogeneous weak supervision.
arXiv Detail & Related papers (2023-04-12T06:32:08Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - IOP-FL: Inside-Outside Personalization for Federated Medical Image
Segmentation [18.65229252289727]
Federated learning allows multiple medical institutions to collaboratively learn a global model without centralizing client data.
We propose a novel unified framework for both textitInside and Outside model Personalization in FL (IOP-FL)
Our experimental results on two medical image segmentation tasks present significant improvements over SOTA methods on both inside and outside personalization.
arXiv Detail & Related papers (2022-04-16T08:26:19Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - Adversarial Graph Representation Adaptation for Cross-Domain Facial
Expression Recognition [86.25926461936412]
We propose a novel Adrialversa Graph Representation Adaptation (AGRA) framework that unifies graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair experiments on several popular benchmarks and show that the proposed AGRA framework achieves superior performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T13:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.